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Abstract

We consider the single-source (or single-sink) buy-at-bulk problem with an unknown concave cost
function. We want to route a set of demands along a graph to or from a designated root node, and the cost
of routing x units of flow along an edge is proportional to some concave, non-decreasing function f such
that f(0) = 0. We present a polynomial time algorithm that finds a distribution over trees such that the
expected cost of a tree for any f is within an O(1)-factor of the optimum cost for that f . The previous
best simultaneous approximation for this problem, even ignoring computation time, was O(log |D|),
where D is the multi-set of demand nodes.

We design a simple algorithmic framework using the ellipsoid method that finds anO(1)-approximation
if one exists, and then construct a separation oracle using a novel adaptation of the Guha, Meyerson, and
Munagala [GMM01] algorithm for the single-sink buy-at-bulk problem that proves an O(1) approxi-
mation is possible for all f . The number of trees in the support of the distribution constructed by our
algorithm is at most 1 + log |D|.
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1 Introduction

We study the single-source (or single-sink) buy-at-bulk network design problem with an unknown concave
cost function. We are given an undirected graph G = (V,E) with edge lengths le and a set of demand nodes
D ⊆ V with integer demands dv and want to route these demands to a designated root node r as cheaply as
possible, where the cost of routing along a particular edge is proportional to some function f of the amount
of flow sent along the edge. In many applications it is natural to assume that f is a concave, non-decreasing
function such that f(0) = 0, capturing the case where we benefit from some kind of economy of scale
when aggregating flows together. We call such functions aggregation functions and define F as the set of
all aggregation functions.

When the function f is given, the problem becomes the well-studied single-sink buy-at-bulk (SSBaB)
problem. SSBaB is NP -hard, since it contains the Steiner tree problem as a special case. The problem
was introduced by Salman et al. [SCRS97] who gave algorithms for special cases. Awerbuch and Azar
[AA97] gave an O(log2 n)-approximation using metric tree embedding, which subsequently improved to
O(log n) using better metric embeddings [Bar98, FRT03]. Building on their own work on hierarchical facil-
ity location [GMM00], Guha, Meyerson, and Munagala (GMM) gave the first constant-factor approximation
[GMM01], an algorithm that features prominently in our results. Recent work [Tal02, GKR03, JR04, GI06]
has reduced the approximation ratio to 24.92 and also provided an elegant cost-sharing framework for think-
ing about this problem.

However, for some applications we may want to assume that f is unknown or is known to vary over time.
For instance, we may be aggregating observations in a sensor network where we do not know the amount
of redundancy among different observations or where the redundancy is known to change. In this setting,
it is desirable to find a solution that is robust to changes in f and provides a constant-factor approximation
simultaneously for all f ∈ F . Moreover, from a purely theoretical perspective, the existence of a good
algorithm that is independent of f reveals non-trivial structure in the problem.

We will focus on randomized algorithms. Given the concavity of f , we may assume without loss of
generality that the optimal routing graph is a tree. Let T be the set of all trees in G spanning D and r, and
let T ∗f be the optimal tree for some fixed f . We use the shorthand f(T ) to denote the cost of T under f , i.e.∑

e lef(xT,e) where xT,e is the amount of flow tree T routes on edge e. There are two natural objectives
which capture simultaneous approximation for multiple cost functions. First, we can try to minimize

R1 = max
f∈F

E[f(T )]
f(T ∗f )

(1)

which essentially gives a distribution over trees such that in expectation, each function f is well-approximated.
Second, and much more difficult, we can look for an algorithm that uses the objective

R2 = E

[
max
f∈F

f(T )
f(T ∗f )

]
(2)

A bound on (2) subsumes (1) and proves there exists a single tree that is simultaneously good for all f . We
call R1 the oblivious approximation ratio and R2 the simultaneous approximation ratio. In this paper, we
will work with the weaker, oblivious objective (1).

Both objectives have been studied in the literature. The tree embeddings used by Awerbuch and Azar
[AA97] give an O(log2 n) oblivious approximation, which was later reduced to O(log n) [Bar98, FRT03].
Goel and Estrin [GE03] improved this to O(log |D|) and also prove the same bound on the stronger simul-
taneous objective. Gupta et al. [GHR06] achieve a O(log2 n) oblivious approximation for a generalization
where both the function and the demands are unknown. Khuller et al. [KRY95] studied special case of si-
multaneously approximating f(x) = x and f(x) = 1 for x ≥ 1, i.e. the shortest-path and Steiner trees, and
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prove an O(1) simultaneous approximation. These 2 functions constitute opposite extremes of functions
in F , and one may wonder if an O(1) approximation for these 2 functions also works for all f ∈ F lying
“in-between”. However, it is not difficult to construct a graph and a set of demands such that the shortest-
path and Steiner trees are identical, but this tree is an ω(1)-approximation for other f ∈ F . Enachescu et
al. [EGGM05] achieve an O(1) simultaneous value but only for grid graphs, assuming spatial correlation
among nearby nodes. This naturally leads to the following questions:

Is R1 = O(1) achievable? If yes, is there a polynomial algorithm that guarantees R1 = O(1)?

We answer both questions in the affirmative. We first write a simple LP formulation of the problem
and show that using the ellipsoid method on the dual we can find an O(1) approximation to the optimal
ratio, whatever it happens to be for a given problem instance. We also show that given an appropriate
separation oracle the optimum is constant and compute an explicit distribution over 1 + dlog (

∑
v dv)e trees

in polynomial time. This general approach is along the lines of small metric tree embeddings [CCG+98]
and oblivious congestion minimization [Räc08].

Our key result is the construction of the necessary separation oracle subroutine, running in polynomial
time, that proves a constant is achievable. We build our oracle around the GMM algorithm for SSBaB,
using a modified analysis to solve a different problem in which we bound the cost of the GMM tree by a
combination of different trees under different cost functions.

1.1 Organization of the Paper

In Section 2 we present an LP formulation and a framework using an approximate separation oracle that
finds a constant-factor approximation to the optimal oblivious approximation ratio. In Section 3 we present
our primary result, which proves the oblivious approximation ratio is constant and constructs the separation
oracle required by Section 2 assuming some extra conditions on the input, and in Section 4 we complete
the proof by showing those extra assumptions can be removed. We conclude with some open problems
(including whether R2 = O(1) can be achieved).

2 LP Formulation and Algorithm Framework

Let R1 be the worst-case optimal oblivious ratio, i.e.

R1 = max
G,l,D,r

min
M

max
f

ET∼M[f(T )]
f(T ∗f )

where M is a distribution over T . In this section we discuss the problem of finding an O(1)-oblivious
approximation if one exists.

By losing a factor of 2 in the approximation ratio we can restrict our analysis to a smaller class of
aggregation functions. LetD = 2dlog(

P
v dv)e, the total amount of demand rounded up to the nearest power of

2. We never route more than D flow on any edge, and dv is integral, so we only care about f(x) for integers
0 ≤ x ≤ D. Suppose f ∈ F , and 2i < x < 2i+1. By the monotonicity of f , f(2i) ≤ f(x) ≤ f(2i+1), and
by the concavity of f , f(2i+1) ≤ 2f(2i), so with a loss of a factor of 2 we can interpolate between f(2i) and
f(2i+1) and assume f is piecewise linear with breakpoints only at powers of 2. LetAi(x) = min{x, 2i} and
T ∗i the optimal aggregation tree for Ai. We call Ai(x) the i-th atomic function following the terminology
of Goel and Estrin [GE03], and it is easy to see that any f ∈ F that is linear between successive powers of
2 can be written as a linear combination of {Ai}0≤i≤logD. Therefore, it suffices to design an algorithm A
minimizing maxi EA[Ai(TA)]/Ai(T ∗i ).
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Our algorithm makes use of the standard SSBaB problem where f is known. We assume that f is given
in the form of a set of K pipes {(σk, δk)}0≤k≤K−1, where the cost of routing x flow on pipe k is equal to
σk+xδk. Then f(x) is defined as the cost of using the cheapest pipe for x flow: mink σk+xδk. We assume
that σ0 ≤ σ1 ≤ · · · ≤ σK−1, and by concavity we can assume δ0 ≥ δ1 ≥ · · · ≥ δK−1. Define uk = σk

δk
, the

point at which the cost due to δkx begins to outweigh the cost due to σk. We call uk the capacity of pipe k;
the name arises from an alternate formulation (equivalent up to a factor of 2) of SSBaB where pipes have a
fixed cost σk for a fixed capacity uk. Let πBaB be the best-known approximation ratio for SSBaB. Currently
πBaB = 24.92 using an algorithm by Grandoni and Italiano [GI06].

We also employ an approximation algorithm for a special case of SSBaB, the single-sink rent-or-buy
(SSRoB) problem. Here f(x) is characterized by 2 pipes: (0, 1) and (M, 0), i.e. we can pay x to route
x flow or pay M to route any amount of flow. Let πRoB be the best-known SSRoB approximation ratio.
Eisenbrand et al. [EGRS08] give a 2.92-approximation.

If we can calculate Ai(T ) and Ai(T ∗i ) for every i and T ∈ T then the following linear program finds
the optimal distribution of trees.

min θ
s.t.

∑
T∈T xT ≥ 1

∀0 ≤ i ≤ logD, θAi(T ∗i )−
∑

T∈T xTAi(T ) ≥ 0
x, θ ≥ 0

(3)

In other words, we want a distribution {xT }T∈T of trees minimizing maxi
P
T xtAi(T )
Ai(T ∗i ) . However, this

approach is not directly tractable, as T ∗i is NP -hard to find, and |T | is exponentially large.
We solve an SSRoB approximation for each Ai to get Ai(T̃i)—a πRoB-approximation—and replace

Ai(T ∗i ) withAi(T̃i) in the constraints, so that all quantities in the LP are polynomial-time computable. Now
consider the dual of (3), which is given by

max β

s.t.
∑logD

i=0 αiAi(T̃i) ≤ 1
∀T ∈ T β −

∑logD
i=0 αiAi(T ) ≤ 0

α, β ≥ 0

(4)

With an approximate separation oracle for the dual (4), we can approximate the solution in polynomial
time using the ellipsoid method, and then transform it into an approximate solution to the primal (3). More
formally:

Theorem 2.1. With a randomized πBaB-approximation to SSBaB, we can find a 2πRoBπBaBR1-approximation
in expectation to the primal LP (3) that runs in polynomial time with high-probability.

The proof uses a SSBaB approximation algorithm to construct an approximate separation oracle for (4).
However, we will not prove this theorem because it is a special case of the following more general result,
assuming that R1 is a constant which will follow from Theorem 3.8.

Theorem 2.2. If there exists a polynomial-time algorithmA and a given constant c such that ∀α0, . . . , αK−1 ≥
0, A finds TA such that EA [

∑
i αiAi(TA)] ≤ c

∑
i αiAi(T

∗
i ) then we can construct an algorithm that

runs in polynomial-time with high probability, makes O(poly(logD)) calls to A with high probability, and
achieves an expected oblivious approximation ratio of 2cπRoB using a distribution over 1 + logD trees.

Proving that such an algorithmA exists for a constant c is the primary result of this paper and is discussed
in sections 3 and 4.
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Remark 2.3. IfA is deterministic then the algorithm always runs in polynomial time and the expected ratio
is cπRoB , and if it is randomized then the algorithm runs in polynomial time with high probability and the
expected ratio is 2cπRoB . For randomized A the ratio can also be reduced to (1 + ε)cπRoB with a 1

ε -factor
increase in the runtime.

Proof of Theorem 2.2. Let Ai(T̃i) be a πRoB-approximation to Ai(T ∗i ) as above. We construct an approxi-
mate separation oracle S(~α, β) for the dual (4) as follows:

1. Check if
∑

i αiAi(T̃i) > 1. If so, we have a violated constraint and are done.

2. Run A(~α) until it returns a tree T such that
∑

i αiAi(T ) < 2c
∑

i αiAi(T̃i).

3. If
∑

i αiAi(T ) < β, return T . Otherwise, return feasible.

For a fixed β, let Pβ be the polytope defined by
∑

i αiAi(T̃i) ≤ 1, and β −
∑

i αiAi(T ) ≤ 0 for all
T ∈ T . We run the following procedure to find the desired distribution of trees:

1. Run the ellipsoid method to check the feasibility of P2c, starting with the initial bounding box 0 ≤
αi ≤ 1 ∀i and using S as the separation oracle. It will terminate as infeasible.

2. Let C be the set of constraints returned by S provingP2c is infeasible. It consists of
∑logD

i=0 αiAi(T̃i) ≤
1, and 2c−

∑logD
i=0 αiAi(T ) ≤ 0 for T in some subset of trees T ′.

3. In the dual LP (2), restrict the constraints to C, and take the dual to get

min θ
s.t.

∑
T∈T ′ xT ≥ 1

∀0 ≤ i ≤ logD, θAi(T̃i)−
∑

T∈T ′ xTAi(T ) ≥ 0
x, θ ≥ 0

(5)

4. Find a vertex optimal solution to (5), and return the distribution {x∗T }.

First, we claim that S(~α, β) will find a violated constraint whenever β ≥ 2c and will do so in polynomial
time with high probability. If

∑
i αiAi(T̃i) ≤ 1 is violated, then we are done. If not, we know A(~α) finds

TA such that

EA

[∑
i

αiAi(TA)

]
≤ c

∑
i

αiAi(T ∗i ) ≤ c
∑
i

αiAi(T̃i) ≤ c

By Markov’s inequality PrA
[∑

i αiAi(TA) ≥ 2c
∑

i αiAi(T̃i)
]
≤ 1

2 , so with high probability O(log n) in-
vocations ofA—each running in polynomial time—suffice in step 2 of S to find a T satisfying

∑
i αiAi(T ) <

2c
∑

i αiAi(T̃i). Now if β ≥ 2c, the constraint β −
∑

i αiAi(T ) ≤ 0 is violated.
With the necessary separation oracle, the ellipsoid algorithm can solve feasibility ofPβ inO(poly(logD))

iterations, so using S it will conclude P2c is infeasible1. The set of constraints C returned by S dur-
ing the execution constitutes a proof of infeasibility, and C consists of

∑logD
i=0 αiAi(T̃i) ≤ 1, and β −∑logD

i=0 αiAi(T ) ≤ 0 for each T in some set of trees T ′.
Consider writing (4) with only the constraints in C. Taking the dual yields (5), which only has variables

xT for T ∈ T ′. The ellipsoid algorithm concluded P2c is infeasible after O(poly(logD)) iterations, so |T ′|
is only polynomially-large in the input size, implying we can solve (5) exactly in polynomial time.

1In practiceAmay find violated constraints for β < 2c, and we can do binary search to find the smallest infeasible β. However,
we cannot improve the provable guarantee beyond β = c, and this comes at a cost to the runtime.
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Find a vertex-optimal solution θ∗, x∗T to (5). The constraints in C are enough to restrict the optimal dual
objective to be at most 2c, so by duality θ∗ ≤ 2c. Therefore, for all i∑

T∈T ′
x∗TAi(T ) ≤ θ∗Ai(T̃i) ≤ 2cAi(T̃i) ≤ 2cπRoBAi(T ∗i )

Divide by Ai(T ∗i ) to get the oblivious ratio:

max
i

∑
T x
∗
TAi(T )

Ai(T ∗i )
≤ 2cπRoB

Moreover, we claim {x∗T } is a distribution over only 1 + logD trees. The LP (5) has |T ′|+ 1 variables
and 2 + logD constraints, and the vertex-optimal solution θ∗, x∗T must have |T ′| + 1 tight constraints,
implying at least |T ′| − logD− 1 non-negativity constraints must be tight. We know θ∗ is positive, so only
at most 1 + logD of the variables xT can be non-zero.

3 The Separation Oracle Subroutine A

By Theorem 2.1 we can find an O(1)-approximation to R1, whatever it may be, but it remains to prove that
this optimal ratio is a constant. In this section we construct the procedure A required by Theorem 2.2 using
the GMM algorithm for SSBaB.

Our contribution is adapting a special case of the analysis of the GMM algorithm, namely those cases
that arise when f(x) =

∑
i αiAi(x), to solve a different problem–that of bounding the cost of the output

by
∑

i αiAi(T
∗
i ) rather than f(T ∗f ). The GMM algorithm and proof works in stages and bounds the cost of

the pipes laid in each stage by a different chunk of the optimal tree T ∗f . On the other hand, in our proof we
bound the cost of each stage by the cost of a different tree evaluated under a different cost function.

3.1 Background: The GMM Algorithm

For completeness, we summarize the GMM algorithm and the key lemmas and definitions. See the original
paper [GMM01] for a thorough treatment. We are given a graph, demands D, and pipes {(σk, δk)}k∈[K] as
described in Section 2. We assume the costs of successive pipes differ “significantly”: for some constant γ
such that 0 < γ < 1

2 , we have that δk+1 < γδk and σk < γσk+1. For the SSBaB problem, it is easy to
satisfy these constraints for arbitrary pipes with only an O(1)-factor loss. For our problem, it is harder but
still possible, and this is discussed in Section 4.

We define gk as the indifference point between pipe k and k + 1, which is the solution to the equation
σk + δkgk = σk+1 + δk+1gk, and we define bk as the solution to σk+1 + δk+1bk = 2γ(σk + δkbk), which
we interpret as the point at which pipe k + 1 becomes “significantly” cheaper than pipe k. It is easy to see
that uk ≤ bk ≤ uk+1 for all k.

The algorithm uses O(1)-approximations for Steiner tree and load-balanced facility location (LBFL), a
generalization of the standard facility location problem. In the LBFL problem we have a graph and demands
as in SSBaB, a facility cost Fv for each node v, and a lower bound Lv on the demand that a facility at v must
service. The objective is to choose facilities and routing paths so as to minimize the sum of the cost of the
open facilities and the distances traveled by the demands to a servicing facility. To approximate the LBFL
we must relax the lower bound. Using [GMM00] we can approximate the optimal LBFL cost to within 2πF
while reducing the lower bound by a factor of at most 3. Here πF denotes the best approximation to the
normal facility location problem, currently πF = 1.52 by Mahdian et al. [MYZ02]. We use πS to denote
the best approximation ratio for Steiner tree, currently 1.55 due to Robins and Zelikovsky [RZ00].
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Now we can describe the GMM algorithm itself. At stage k, we lay pipe type k, and we break each stage
into a Steiner tree step and a “shortest-path” tree step based on whether the cost of pipe k is dominated by
the term σk or the term δkx. The effective demands will also change each stage. Let D(k) be the demand
nodes at the start of stage k, and d(k)

v the stage k demand at v ∈ D(k). Initially D(0) = D.

1. Steiner Tree: Find a πS-approximate Steiner tree on D(k) ∪ {r} with edge cost per unit length σk.
Route all demands toward r. Cut the farthest-upstream edge with more than uk flow, recalculate the
flow, and repeat to get a forest with at least uk flow at each root other than r and at most uk flow on
each edge.

2. Consolidation: Let t be a subtree not containing r and St the demand nodes in D(k) it contains. Choose

v ∈ St with probability d
(k)
vP

u∈St
d
(k)
u

and route all demand in t back to v using pipe k.

3. Shortest Path Tree: Approximately solve a LBFL problem with facility lower bound bk and edge cost
per unit length δk on the original demandsD (notD(k) and d(k)

v ). This creates a forest of shortest-path
trees with at least bk flow at each root. If bk demand does not exist, route everything to r.

4. Consolidation: Let t be subtree in the above forest servicing the demands St in D. Choose v ∈ St with
probability dvP

u∈St
du

, and route the true, current demand d(k)
v in St back to v. Let D(k+1) be the set of

nodes chosen for consolidation and d(k+1)
v the demand at these nodes after consolidation.

Next, we mention the crucial lemmas in the GMM analysis used in our proof. See [GMM01] for the
proofs.

Lemma 3.1 (GMM Lemma 4.1). Let d̂v be the current demand at some v ∈ D immediately after any
consolidation step. Then E[d̂v] = dv, i.e. the original demand.

Using an algorithm that is a 3-approximation to the LBFL facility lower bounds, we have the following:

Lemma 3.2 (GMM Lemma 4.5). For every v ∈ D(k), we have E[d(k)
v ] ≥ bk−1

3 .

Define P δk to be the incremental cost (due to δ) of the pipes laid in the facility location step in stage k
and P σk to be the fixed cost (due to σ) of the pipes laid in the Steiner tree step in stage k. All of the other
costs incurred by the GMM algorithm can be bounded by P δk and P σk , so our analysis need only consider
these quantities:

Lemma 3.3 (GMM Lemmas 4.2, 4.4, and 4.8). Let P δk and P σk as defined above. Then E[f(TGMM )] ≤
4
∑

k E[P δk + P σk ], where TGMM is the final tree.

3.2 Adapting the GMM Algorithm

From Theorem 2.2 we are given ~α such that αi ≥ 0, and
∑

i αiAi(T̃i) ≤ 1. We want to find a tree T using
the GMM algorithm such that

∑
i αiAi(T ) ≤ c

∑
i αiAi(T

∗
i ). Define L =

∑
i αiAi(T

∗
i ), the multi-level

cost, and f(x) =
∑

i αiAi(x), the concave cost function. Using this notation our objective becomes to find
T such that f(T ) ≤ cL. Define K as the number of non-zero αi, and for 0 ≤ k ≤ K − 1 define p(k) = j
where j is the index of the k-th non-zero αi.

First, we claim that given ~α we can define the pipes {(σk, δk)} used by the GMM algorithm, and given
SSBaB pipes satisfying some minor conditions we can recover ~α. The following lemmas characterize the
equivalence between the 2 types of parameters:
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Lemma 3.4. Given ~α satisfying αi ≥ 0 with K non-zero αi, the SSBaB pipes {(σk, δk)}0≤k≤K defined
by δk =

∑
j≥k αp(j) and σk =

∑
j<k αp(j)2

p(j) define the function f(x). That is, f(x) =
∑

i αiAi(x) =
mink{σk + δkx}.

Lemma 3.5. Suppose we are given K + 1 SSBaB pipes {(σk, δk)}0≤k≤K such that σ0 = 0 and gk is a
power of 2 for all k. For 0 ≤ k ≤ K − 1, let p(k) = log gk, αp(k) = δk − δk+1, and αj = 0 whenever
j 6= p(k) for all k. Then

∑
i αiAi(x) = mink{σk + δkx}.

Proof of Lemma 3.4. By definition f(x) =
∑

k αp(k)Ap(k)(x). For any k, f(x) is linear from 2p(k−1) to
2p(k) (we will assume 2p(−1) = 0 for consistency of notation), which will correspond to pipe k. For x ∈
[2p(k−1), 2p(k)], the functions Ap(0)(x), . . . , Ap(k−1)(x) have leveled off, and Ap(k)(x), . . . , Ap(K−1)(x) are
growing at rate 1. Define δk as the slope of f(x) in this interval: δk =

∑
j≥k αp(j).

Now we can define σk to match f(x) in the interval [2p(k−1), 2p(k)]:

σk + δk2p(k−1) =
∑
i

αiAi(2p(k−1)) =
∑
j<k

αp(j)2
p(j) +

∑
j≥k

αp(j)2
p(k−1)

=
∑
j<k

αp(j)2
p(j) + δk2p(k−1)

⇒ σk =
∑
j<k

αp(j)2
p(j)

We also add a K + 1st pipe such that δK = 0 and σK =
∑

k αp(k)2
p(k) to cover the interval after every

Ap(k) has leveled off. Now, we claim f(x) = minj{σj + δjx}: for each k we know f(x) = σk + δkx

whenever x ∈ [2p(k−1), 2p(k)] by our choice of δk and σk, and by the concavity of f(x) for each j we have
σj + δjx > f(x) when x < 2p(j−1) or x > 2p(j). Therefore no other pipe can be cheaper in this interval.
Concavity also ensures that σk < σk+1 and δk > δk+1 for all k, yielding valid SSBaB pipes.

Proof of Lemma 3.5. Let K + 1 be the number of pipes, and δ0 > · · · > δK , 0 = σ0 < · · · < σK . Since we
never route more than D flow we may assume the cost function levels off at some x ≤ D, so that δK = 0.
Define p(k) = log gk for 0 ≤ k ≤ K − 1: when we change pipes at gk the slope of f(x) drops, which can
occur only because the term αp(k)Ap(k)(x) levels off. Recover αp(k) by reversing the definitions in the proof
of Lemma 3.4: we have δk =

∑
j≥k αp(j), so for k ≤ K − 1 let αp(k) = δk − δk+1.

We now show by induction that
∑

k αp(k)Ap(k)(x) = minj{σj + δjx}. For the base case x ∈ [0, g0],
we have

min
j
{σj + δjx} = δ0x = (δ0 − δK)x =

K−1∑
k=0

(δk − δk+1)x =
∑
k

αp(k)x =
∑
k

αp(k)Ap(k)(x)

Now assume that for x ∈ [0, gi−1] that
∑

k αp(k)Ap(k)(x) = minj{σj + δjx}. For x ∈ (gi−1, gi], we know
that f(x) = σi + δix. Therefore,

σi + δix =
(
σi−1 + δi−12p(i−1)

)
+ δi(x− 2p(i−1))

=
∑
k

αp(k)Ap(k)(2
p(i−1)) +

K−1∑
k=i

(δk − δk+1)(x− 2p(i−1))

=
∑
k<i

αp(k)Ap(k)(2
p(i−1)) +

∑
k≥i

αp(k)x

=
∑
k

αp(k)Ap(k)(x)
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We use that pipes i − 1 and i have equal cost at gi−1 in the first line and the induction hypothesis in the
second line.

We note that αp(k) corresponds not to a particular SSBaB pipe, but to a breakpoint between pipes: when
we switch from pipe k to k + 1 at 2p(k) flow, the slope of f drops from δk to δk+1, which is caused by the
term αp(k)Ap(k)(x) leveling off.

Given the above equivalence, we will use ~α and {(σk, δk)}k interchangeably for the remainder of the
paper, using whichever representation is more convenient and converting from one form to another using
Lemmas 3.4 and 3.5. However, the additional constraints that for some parameter 0 < γ < 1

2 we have
δk+1 < γδk and σk < γσk+1 for all pipes k, will restrict the possible vectors ~α that can be run through the
algorithm:

Definition 3.6. Call ~α γ-regular if the pipes found using Lemma 3.4 satisfy δk+1 < γδk and σk < γδk+1.

We note the following constraints that γ-regularity imposes on ~α:

Lemma 3.7. If δk+1 < γδk, then αp(k) > (1− γ)δk and αp(k) >
1−γ
γ αp(k+1).

Proof. These follow immediately from αp(k) = δk − δk+1 and δk+1 < γδk.

3.3 Approximation guarantee assuming regular ~α

We will first prove the existence of the separation oracle procedure A in Theorem 2.2 for γ-regular ~α and
later prove in Section 4 that arbitrary ~α can be regularized with only an O(1) change in f(x) and L:

Theorem 3.8. Let ~α be γ-regular, and let f(x) =
∑

i αiAi(x), and L =
∑

i αiAi(T
∗
i ). Then the GMM

algorithm finds a tree TGMM such that E [f(TGMM )] = O(L).

Roughly, our proof bounds the cost of the pipes laid in phase k of the algorithm by αp(k)Ap(k)(T ∗p(k)).
Using Lemma 3.3 we concentrate on P δk and P σk and ignore the other costs. First, we bound the cost of the
Steiner tree steps:

Lemma 3.9. Let πS be the approximation ratio for Steiner tree. Then we have
∑

k E[P σk ] ≤ 3πS
1−γL.

Proof. We need to bound the cost of a Steiner tree spanning the current demands D(k) with cost per unit
length σk. If k = 0, then σk = 0 and we have nothing to bound, so assume k > 0.

We use the edges in T ∗p(k−1). Note that it spans D∪{r} and hence D(k) ∪{r}, and let Wk ⊆ T ∗p(k−1) be

the subset of edges spanning these nodes. By Lemma 3.2 each v ∈ D(k) has aggregated at least E[d(k)
v ] ≥

bk−1

3 demand. At the end of the previous LBFL phase, we chose a node v for consolidation from the set of
all u routing to facility f with probability dvP

u→f du
≤ 3dv

bk−1
. An edge is in Wk only if some v ∈ D(k) routes

through it, so by the union bound an edge carrying x∗e demand in T ∗p(k−1) is in Wk with probability at most
3x∗e
bk−1

.

The tree Wk pays σk for any amount of flow, whereas T ∗p(k−1) pays Ap(k−1)(x∗e) = min{2p(k−1), x∗e} to
send x∗e flow on e. Then the cost of Wk is

E[Wk] = σk
∑
e

Pr[e ∈Wk]le = σk
∑
e

Pr[e ∈Wk]le
Ap(k−1)(x∗e)

min{x∗e, 2p(k−1)}

≤ σk
∑

e:x∗e≤2p(k−1)

3x∗e
bk−1

Ap(k−1)(x∗e)
x∗e

le + σk
∑

e:x∗e>2p(k−1)

1 ·
Ap(k−1)(x∗e)

2p(k−1)
le

= 3
σk
bk−1

∑
e:x∗e≤2p(k−1)

Ap(k−1)(x
∗
e)le +

σk
2p(k−1)

∑
e:x∗e>2p(k−1)

Ap(k−1)(x
∗
e)le

(6)
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We need to bound σk
bk−1

and σk
2p(k−1) . For the former term,

σk
bk−1

=
σk(2γδk−1 − δk)
σk − 2γσk−1

≤ σk(2γδk−1 − δk)
2γσk(1− γ)

≤ 2γ(δk−1 − δk)
2γ(1− γ)

=
αp(k−1)

1− γ

using that bk−1 = σk−2γσk−1

2γδk−1−δk by definition, the γ-regularity constraints on σk−1, and the fact that 2γ < 1.
For the latter term,

σk
2p(k−1)

=
σk−1 + αp(k−1)2p(k−1)

2p(k−1)
≤
γσk + αp(k−1)2p(k−1)

2p(k−1)
= γ

σk
2p(k−1)

+ αp(k−1)

⇒ (1− γ) σk
2p(k−1)

≤ αp(k−1) ⇒
σk

2p(k−1)
≤
αp(k−1)

1− γ

using the formula for σk in Lemma 3.4 and γ-regularity.
Plug these into the final line in equation (6) above:

E[Wk] ≤
αp(k−1)

1− γ

3
∑

e:x∗e≤2p(k−1)

Ap(k−1)(x
∗
e)le +

∑
e:x∗e>2p(k−1)

Ap(k−1)(x
∗
e)le


=
(

3
1− γ

)
αp(k−1)Ap(k−1)(T

∗
p(k−1))

We lose another factor of πS in approximating the Steiner tree. Sum over all k to bound
∑

k E[P σk ] by
3πS
1−γL.

Analyzing the LBFL step requires an additional lemma bounding the difference between gk and bk:

Lemma 3.10. For every k, gk ≤ bk ≤ 1−2γ2

γ gk.

Proof. The bound gk ≤ bk follows from Lemma 3.5 in GMM [GMM01]. For the other inequality, from the
definition of bk and gk we have

gk =
σk+1 − σk
δk − δk+1

bk =
σk+1 − 2γσk
2γδk − δk+1

⇒ bk
gk

=
σk+1 − 2γσk
σk+1 − σk

· δk − δk+1

2γδk − δk+1

For the ratio of σ terms,

σk+1 − 2γσk
σk+1 − σk

=
σk+1 − σk
σk+1 − σk

+ (1− 2γ)
σk

σk+1 − σk

< 1 + (1− 2γ)
σk(

1
γ − 1

)
σk

= 1 +
γ − 2γ2

1− γ
=

1− 2γ2

1− γ

Similarly, for the δs,

δk − δk+1

2γδk − δk+1
=

2γδk − δk+1

2γδk − δk+1
+ (1− 2γ)

δk
2γδk − δk+1

< 1 + (1− 2γ)
δk

(2γ − γ)δk
=

1− γ
γ

Combining the 2 bounds,
bk
gk
≤ 1− 2γ2

1− γ
1− γ
γ

=
1− 2γ2

γ
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Now we can bound the LBFL cost E[P δk ]:

Lemma 3.11. We have that
∑

k E[P δk ] ≤ 2πF 1−2γ2

γ−γ2 L where πF is the approximation ratio for the standard
(non-load-balanced) facility location problem.

Proof. In the shortest path tree step, the GMM algorithm solves an LBFL problem on the original demands
D with facility lower bound bk and edge cost per unit length δk. We will construct a feasible solution using
the edges of T ∗p(k). Orient the edges towards r, and find the farthest upstream (i.e. away from r) edge routing
at least bk flow. Cut the edge, and place a facility at the upstream node. Subtract this flow from downstream
edges, and repeat the procedure. If we finish with less than bk flow at the root node, we route each demand
still reaching the root from its source vertex along the tree to the nearest existing facility (according to
distances in T ∗p(k)). Let Fk be the resulting forest, and note that it has at least bk flow at each facility.

For an edge e let xe be the amount Fk routes on e when the demands D are routed, and x∗e the amount
that T ∗p(k) routes on e. We now show that xe ≤ x∗e. If we finish cutting T ∗p(k) with at least bk at the root then
all flows are a subset of the flows in T ∗p(k) so xe ≤ x∗e. If we end up with too little demand for a facility in
the final step then some of those demands will not be flowing downstream towards r in Fk. For each edge
they take towards r, they are following the routing in T ∗p(k), so xe ≤ x∗e. For each e edge taken away from r,
we are no longer following T ∗p(k), but we must be moving upstream towards the nearest facility. This implies
that in the tree T ∗p(k) edge e carried more than bk flow because all demand at the upstream facility flowed
through e towards r. Since we are sending strictly less than bk demand upstream we still have xe ≤ x∗e.

The forest Fk never routes more than bk flow, so xe ≤ bk. When x∗e ≤ gk, x∗e = Ap(k)(x∗e), so xe ≤
Ap(k)(x∗e). Since Ap(k) levels off at gk, this may not hold for x∗e > gk , but by Lemma 3.10 bk ≤ 1−2γ2

γ gk.

Therefore xe ≤ bk ≤ 1−2γ2

γ Ap(k)(x∗e) when x∗e ≥ gk.
Now let ye be the flow Fk routes on edge e when the current, stage k demandsD(k) are used. By Lemma

3.1, E[d̂v] = dv for each v ∈ D. Summing over all the demands that contribute to an edge’s flow, we have
E[ye] = xe.

The cost of Fk with δj cost per unit edge length is

E

[
δk
∑
e

leye

]
= δk

∑
e

lexe ≤ δk
∑
e

le

(
1− 2γ2

γ
Ap(k)(x

∗
e)
)
≤
(
αp(k)

1− γ

)(
1− 2γ2

γ

)
Ap(k)(T

∗
p(k))

using 1−2γ2

γ > 1 and αp(k) ≥ (1− γ)δk from Lemma 3.7.
We can find an approximate LBFL solution that is a 2πF -approximation to the optimal cost and reduces

the facility lower bound by a factor of at most 3. Therefore

E[P δk ] ≤ 2πFE[Fk] ≤
(

2πF
1− 2γ2

γ − γ2

)
αp(k)Ap(k)(T

∗
p(k))

Sum over all values of k to bound the expected cost by 2πF 1−2γ2

γ−γ2 L.

Proof of Theorem 3.8. Combining the bounds in Lemmas 3.3, 3.11, and 3.9:

E[f(TGMM )] ≤ 4
(

2πF
1− 2γ2

γ − γ2
+

3πS
1− γ

)
L
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This completes the analysis ofA for γ-regular ~α. If arbitrary ~α can be γ-regularized for some 0 < γ < 1
2

it follows that R = O(1).
Recent algorithms for SSBaB are based on the Gupta, Kumar, and Roughgarden (GKR) algorithm

[GKR03, GKPR07], which achieves a better approximation ratio than GMM with a simpler analysis, and
one may wonder whether we could reap the same benefits by basing our proof around this algorithm in-
stead. One round of GKR is roughly equivalent to one round of GMM—starting with about gk−1 demand
at a subset of nodes and ending with about gk demand at a smaller subset—but the GKR analysis bounds
the entire cost of a round using only one tree, whereas GMM requires two. However, each tree required
by GMM can be easily constructed from some T ∗i in O(αiAi(T ∗i )), but building the tree needed by GKR
and within the right bounds seems trickier. Note that Lemmas 3.9 and 3.11 use two different trees, T ∗p(k−1)
and T ∗p(k), analyzed in two different ways, either fixed or linear cost per edge. Although this conveniently
matches the GMM algorithm, it also required for the proof to work. Using only a single Steiner tree on a
subset of the nodes as in GKR allows less flexibility, so a proof may require a different approach or more
substantial changes to the original GKR analysis.

4 Handling Arbitrary ~α

Given any ~α, where αi ≥ 0, defining f(x), a concave cost function, and L, the multi-level cost, we need
to find regular ~α′ defining f ′(x) and L′ such that f(x) = O(f ′(x)) ∀x, and L′ = O(L). Then applying
Theorem 3.8 to ~α′ gives f ′(TGMM ) = O(L′), and

f(TGMM ) = O(f ′(TGMM )) = O(L′) = O(L)

satisfying the precondition of Theorem 3.8. Note that we can allow f to grow and L to shrink arbitrarily
in the transformation to f ′ and L′, but we need to bound increases in L and decreases in f . By scaling by∑

i αi we may assume without loss of generality that
∑

i αi = 1.
First, we prove a simple bound on the change between each term Ai(T ∗i ) in L.

Lemma 4.1. For any i and any k > 0, Ai(T ∗i ) ≤ Ai+k(T ∗i+k) ≤ 2kAi(T ∗i ).

Proof. Note Ai(x) ≤ Ai+k(x) ≤ 2kAi(x) for k > 0. Therefore

Ai(T ∗i ) ≤ Ai(T ∗i+k) ≤ Ai+k(T ∗i+k) ≤ Ai+k(T ∗i ) ≤ 2kAi(T ∗i )

To regularize the values we run ~α through a series of three procedures, one for each of the following
lemmas, each of which changes ~α to satisfy an additional set of constraints. None of the procedures are
conceptually difficult, but the details are quite intricate. We will state the lemmas, give a brief sketch of the
ideas, and present the complete proofs in the appendix.

The first lemma is only a helper used in satisfying the σ constraints. The proof serves as a warmup for
the later lemmas, which use similar ideas but are more involved.

Lemma 4.2. Given arbitrary ~α, we can find ~α′ such that the corresponding f ′,L′, δ′, σ′ satisfy f(x) ≤
f ′(x), L′ ≤ 2L, and

σ′K−1

δ′K−1
≤ D, where K is the number of pipes, and D is the total demand rounded up to

a power of 2.

The following 2 lemmas perform the actual regularization.
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Lemma 4.3. Given ~α satisfying σK−1

δK−1
≤ D, we can find ~α′ such that the corresponding f ′,L′, δ′, σ′ satisfy

f(x) ≤ 3f ′(x), L′ = O(L),
σ′K−1

δ′K−1
≤ D, and δ′k+1 < γδ′k for all k.

Lemma 4.4. Given ~α satisfying σK−1

δK−1
≤ D and δk+1 < γδk, we can find ~α′ such that such the corresponding

f ′,L′, δ′, σ′ satisfy f(x) ≤ 5
2f
′(x), L′ = O(L), δ′k+1 < γδ′k, and σ′k < γσ′k+1 for all k.

The proofs are based around the following idea: check if δk+1 ≥ γδk or σk ≥ γσk+1, and discard pipes
that violate the constraints. The additional difficulty, relative to the analysis of GMM, arises from the special
form that f must satisfy and the need to bound the increase in L. When we remove pipes in general the
indifference points between subsequent pipes will no longer be powers of 2, so f can no longer be defined
in terms of ~α. We fix this by modifying the parameters of an offending pipe until the new breakpoint is a
power of 2. To avoid drastic changes in L or f , we achieve this by holding the cost of the given pipe k fixed
at its indifference point with either k − 1 of k + 1 and “rotating” the line σk + δkx around this fixed point
until the other indifference point is fixed.

Analyzing the increase in L caused by these procedures is the technical crux in the regularization anal-
ysis, as removing pipes can shift “α-mass” in the multi-level cost onto much more expensive trees. We
consider each pipe removal and the terms in L it affects. If α-mass is shifted from Ai(T ∗i ) to Ai+l(T ∗i+l),
where l = O(1), then the current chunk of L has increased by O(1). If not, we show that the conditions
requiring l = ω(1) imply there exist large terms in L above i + l that can absorb the increase with only an
O(1)-factor loss. We only charge against each L-term O(1) times during the entire regularization, so the
total increase is bounded by O(1).

We summarize the consequences of the regularization procedure below:

Theorem 4.5. The algorithm A required by Theorem 2.2 exists for a constant c, and the oblivious approxi-
mation ratio R1 is constant.

5 Open Problems

A number of interesting open problems remain to be solved. First, we have only achieved an O(1)-ratio
for the objective R1 = maxf E[f(T )]/f(T ∗f ), but Goel and Estrin [GE03] have shown an O(log |D|)-
approximation for the much harder objective R2 = E

[
maxf f(T )/f(T ∗f )

]
, proving there exists a single

tree that is simultaneously anO(log |D|)-approximation for all f ∈ F . Achieving a constant for this stronger
objective or showing a lower bound remains an important open question.

Second, although our algorithm proves that an O(1)-approximate distribution exists, the ellipsoid algo-
rithm tells us little about what these trees actually look like. A combinatorial algorithm that yields insight as
to the actual structure of these trees would also be of interest. Third, we have made little attempt to optimize
the constant c in the approximation ratio, and the resulting value is huge due to the regularization procedure.
Shaving large factors off our bound on R1 may be a simple question, and it would be particularly interesting
to find an oblivious approximation algorithm that is competitive with standard SSBaB for known f .
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A Proofs of regularization lemmas

Lemma 4.2. Given arbitrary ~α, we can find ~α′ such that the corresponding f ′,L′, δ′, σ′ satisfy f(x) ≤
f ′(x), L′ ≤ 2L, and

σ′K−1

δ′K−1
≤ D, where K is the number of pipes, and D is the total demand rounded up to

a power of 2.

Proof. Let k be the first pipe such that σk
δk
≥ D. Note k > 0 since σ0

δ0
= 0. Remove all pipes above k.

Now we modify the parameters of pipe k to satisfy the desired constraint. Increase δk, while decreasing σk
so as to hold σk + δk2p(k−1) fixed, until σk

δk
= D. Geometrically, we are rotating the line y = σk + δkx

counter-clockwise around the point (2p(k−1), σk + δk2p(k−1)). Let δ′k, σ′k be the new parameters for pipe k.
Let f ′ be the new cost function formed by modifying pipe k and removing pipes k + 1, . . . ,K − 1 and L′

the associated multi-level cost.

Claim: The function f ′(x) is concave, and f(x) ≤ f ′(x) for all x.

Initially δk < δk−1 and σk > σk−1, and we continuously decrease σk while increasing δk. We know
σk−1 + δk−12p(k−1) = σ′k + δ′k2

p(k−1), so if we decrease σ′k to σk−1 the modified pipe k will match

pipe k − 1. However, we have that σk−1

δk−1
< D = σ′k

δ′k
, so we stop before reaching that point. Therefore

σ′k > σk−1 and δ′k < δk−1, which implies f ′(x) is concave since the switchover between pipes k − 1
and k is unchanged. We only increased the rate of growth for x ≥ 2p(k−1), so f ′(x) ≥ f(x) for all x.

Claim: The new multi-level cost L′ is at most 2L.

There is a term αp(j) for each changeover between pipes as well as the implicit breakpoint at D
when f levels off. Increasing δk and removing pipes k + 1, . . . ,K − 1 so that pipe k is used all
the way to D corresponds in L to pushing α-mass from the terms αp(k−1)Ap(k−1)(T ∗p(k−1)) + · · · +
αp(K−1)Ap(K−1)(T ∗p(K−1)) onto the term δ′kAlogD(T ∗logD) because p′(k) = logD.

By the definition of σ′k and δ′k and Lemma 3.4 we have

δ′k =
σ′k
D

=
∑
j<k

α′p′(j)
2p
′(j)

D
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The terms αp(0), . . . αp(k−2) are unchanged, and αp(k−1) drops due the decreased difference between
δk−1 and δk. There are no non-zero α′i between p(k − 1) and logD. This gives us

δ′k =
∑
j<k

α′p′(j)
2p
′(j)

D
≤
∑
j<k

αp(j)
2p(j)

D

Next we use Lemma 4.1 to relate 2p(j)

D Ap(j)(T ∗p(j)) and AlogD(T ∗logD):

δ′kAlogD(T ∗logD) ≤
∑
j<k

αp(j)
2p(j)

D
AlogD(T ∗logD) ≤

∑
j<k

αp(j)Ap(j)(T
∗
p(j)) ≤ L

Finally, L′ =
∑

j<k α
′
p(j)Ap(j)(T

∗
p(j)) + δ′kAlogD(T ∗logD) ≤ 2L.

Lemma 4.3. Given ~α satisfying σK−1

δK−1
≤ D, we can find ~α′ such that the corresponding f ′,L′, δ′, σ′ satisfy

f(x) ≤ 3f ′(x), L′ = O(L),
σ′K−1

δ′K−1
≤ D, and δ′k+1 < γδ′k for all k.

Proof. We repeat the following two steps until δk+1 < γδk for all k.

1. Deletion Step: The basic idea here is the same as that used by GMM Lemma 3.2 [GMM01] to satisfy
the constraints on the δ’s: whenever a pipe violates the constraint δk+1 ≥ γδk, we remove the pipe.

Let k be the smallest index such that δk+1 ≥ γδk, and let l be the smallest integer such that δk+l <
γ
3 δk. If such an l exists, then remove pipes k + 1, . . . , k + l − 1, and change f(x) in the interval
[2p(k), 2p(k+l−1)] by using the cheaper of pipe k and k + l. If no such l exists then remove all pipes
above k, and replace them with pipe k. Note that this does not break the condition set in Lemma 4.2.

2. Rotation Step: Pipes k and k+ l now have equal cost at some point g, but g may not be a power of 2, in
which case f(x) is no longer in the form

∑
i αiAi(x), and ~α′ is no longer defined.

We want to modify the pipes to change g while not affecting L or f too much. As in Lemma 4.2, we
hold the cost of pipe k fixed when routing 2p(k−1) flow (where we switch from k−1 to k), and reduce
δk until pipes k and k+lmeet at the next power of 2, increasing σk to maintain k’s cost at 2p(k−1). This
corresponds to rotating the line y = σk + δkx clockwise around the point (2p(k−1), σk + δk2p(k−1)).
Let δ′k and σ′k be the new parameters for pipe k. Note that f ′(x) now has the proper structure again,
and ~α′ and L′ are well-defined. We never increase σ0 above 0 since we hold this point fixed when
adjusting pipe 0.

First, we bound the change to δk in the rotation step. This allows us to prove that the constraints on the
δ’s are satisfied, and f(x) decreases by at most an O(1)-factor.

Claim: After rotation δ′k ≥
δk
3 .

Before adjustment, we are indifferent between k and k + l at (g, yk) where yk = σk + δkg = σk+l +
δk+lg. The difference in costs between k and k + l at 2p(k−1) flow remains unchanged because we
hold the cost of pipe k fixed at 2p(k−1). Let xk = g − 2p(k−1), the distance after 2p(k−1) at which
their costs are equal. Before rotation, the pipes’ costs approach each other at a rate of δk− δk+l. If we
reduce δk by a factor of 3, then δk

3 − δk+l ≤
1
3(δk − δk+l), so it takes at least 3xk for pipe k to grow
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Figure 1: To ensure the indifference point between pipes k and k + l is a power of 2 we “rotate” pipe k
around it’s starting point until it meets k + l at a power of 2.

from σk + δk2p(k−1) to yk, during which pipe k + l’s cost only increases, so pipe k does not surpass
k + l until after 2p(k−1) + 3xk.

The original pipe k met pipe k + 1 (now removed) at some point 2p(k) ≥ 2p(k−1)+1 before meeting
k + l at g. Therefore g ≥ 2p(k−1)+1, which implies xk = g − 2p(k−1) ≥ g

2 . After reducing δk to δk
3 ,

pipes k and k+ l now meet after 2p(k−1) +3xk = g+2xk ≥ 2g. There must be a power of 2 between
g and 2g, and we reduce δk only until we hit the next power of 2, so δ′k ≥

δk
3 .

Claim: When the procedure is finished δ′k+1 < γδ′k for all k.

By the choice of l, δk+l <
γ
3 δk ≤ γδ′k, using the previous claim. Further δ′k < δk < γδk−1, so no

previously-satisfied constraints are broken. We renumber the pipes, and repeat the process for the next
constraint violation. When we are done, all the remaining pipes will satisfy δ′k+1 < γδ′k.

Claim: For all x, f(x) ≤ 3f ′(x).

Note that removing pipes k+1, . . . , k+ l− 1 only changes f in the interval (2p(k−1), 2p(k+l−1)), and
we only remove or adjust pipes in this interval once. Initially, removing pipes can only increase f(x),
but then we reduce δk by a factor of at most 3, which may decrease f(x) by a factor of at most 3.

Now, we must bound the potential increase in L. To avoid confusion due to relabeling indexes after
removing pipes, we change notation slightly. Suppose the procedure completes after K ′ iterations. Let
α′p′(0), . . . , α

′
p′(K′−1) be the final non-zero α’s, and αp(0), . . . , αp(K−1) the original α’s. For 0 ≤ k ≤ K ′−1

let αp(sk), . . . , αp(sk+1−1) be the L-terms affected by the kth iteration of the procedure: either they are
removed and merged into α′p′(k) or α′p′(k) = αp(sk) if the constraint is already satisfied. We need to analyze

how mass is shifted between terms in L. Define Lk =
∑sk+1−1

i=sk
αp(i)Ap(i)(T ∗p(i)), the portion of L that

round k affects.
Consider round k in which we remove old pipes sk + 1, . . . , sk+1 − 1 and adjust δ′k. The old δsk+1

be-
comes δ′k+1. Rotating δ′k increases α′p′(k−1) because α′p′(k−1) = δ′k−1−δ′k but reduces the total α-mass above
p′(k − 1) because δ′k =

∑
j≥k α

′
p(j), decreasing L. The remaining α-mass on αp(sk)Ap(sk)(T

∗
p(sk)

), . . .,
αp(sk+1−1)Ap(sk+1−1)(T ∗p(sk+1−1)) merges intoα′p′(k)Ap′(k)(T

∗
p′(k)) where p′(k) is somewhere between p(sk)

and p(sk+1). If mass from some αp(i) moves down to α′p′(k) where p′(k) < p(i), then we can ignore it, as it
will only reduce L. If it moves up, then we will charge the increase to some higher term in L.

Let cδ <
γ
3 be some small constant. There are 2 cases to consider: either δsk+1

≥ cδδ′k or δsk+1
< cδδ

′
k.
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Case 1: cδδ′k > δsk+1
= δ′k+1.

Intuitively, this means there is a big drop between δsk+1−1 ≥ γ
3 δ
′
k and δsk+1

< cδδ
′
k, so αp(sk+1−1)

must be fairly large: αp(sk+1−1) = δsk+1−1 − δsk+1
≥ (γ3 − cδ)δ

′
k. We will charge any increase in

L this iteration to the term αp(sk+1−1)Ap(sk+1−1)(T ∗p(sk+1−1)). Note that we are always in this case
when we remove the last pipe because we can view the last pipe as intersecting a dummy pipe with
δ = 0 at D.

In order to boundα′p′(k)Ap′(k)(T
∗
p′(k)) byαp(sk+1−1)Ap(sk+1−1)(T ∗p(sk+1−1)) we must show that p(sk+1−

1) ≥ p′(k). Note 2p
′(k) is the cost at which the new, rotated pipe k surpasses the old pipe sk+1. New

pipe k intersects pipe sk+1 − 1 before sk+1, and δ′k > δsk+1−1, so pipes k and sk+1 meet before
sk+1 − 1 and sk+1 do. Therefore g ≤ 2p(sk+1−1), and when we reduce δ′k to fix the breakpoint we
never need to raise g beyond 2p(sk+1−1) before hitting a power of 2. Therefore

αp(sk+1−1)Ap(sk+1−1)(T
∗
p(sk+1−1)) ≥

(γ
3
− cδ

)
δ′kAp(sk+1−1)(T

∗
p(sk+1−1)) (by assumption)

≥
(γ

3
− cδ

)
α′p′(k)Ap(sk+1−1)(T

∗
p(sk+1−1)) (using δ′k =

∑
j≥k

α′p(j))

≥
(γ

3
− cδ

)
α′p′(k)Ap′(k)(T

∗
p′(k))

We can charge the increase inα′p′(k) toαp(sk+1−1) in the current chunkLk, with a loss of
(γ

3 − cδ
)−1 =

3
γ−3cδ

, and this charge can only occur once for each Lk.

Case 2: cδδ′k ≤ δsk+1
.

In this case there is no large collection of mass that we can easily guarantee is above p′(k) in the
current interval, but we do know there must be a lot of mass somewhere above p(sk+1 − 1) because
δsk+1

is large. The α-mass αp(sk+1) + . . .+αp(sk+2−1) = δsk+1
− δsk+2

is “used” in the next iteration

and contributes Lk+1 to L. We know γδsk+1
= γδ′k+1 > δsk+2

, which implies
∑sk+2−1

i=sk+1
αp(i) =

δsk+1
− δsk+2

> (1− γ)δsk+1
. Now we can bound the increase

α′p′(k)Ap′(k)(T
∗
p′(k)) ≤

(
δ′k − δsk+1

)
Ap′(k)(T

∗
p′(k)) (α′p′(k) = δ′k − δsk+1

)

≤
(

1
cδ
− 1
)
δsk+1

Ap′(k)(T
∗
p′(k)) (by assumption)

≤
(

1
cδ
− 1
) 1

1− γ

sk+2−1∑
i=sk+1

αp(i)

Ap′(k)(T
∗
p′(k)) (shown above)

≤ 1− cδ
cδ(1− γ)

sk+2−1∑
i=sk+1

αp(i)Ap(i)(T
∗
p(i)) (p′(k) < p(sk+1) ≤ p(i)

=
1− cδ

cδ(1− γ)
Lk+1

Therefore we can charge the increase in L due to iteration k to the portion Lk+1 used in the next
iteration.

For a particular segment Lk of L, the k − 1th iteration may been bounded by 1−cδ
cδ(1−γ) increase in Lk,

and the kth iteration may charge against a 3
γ−3cδ

increase. Each type of charge can occur at most once per
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chunk. Therefore the total increase in each piece, and hence the total increase in L =
∑

k Lk is

1− cδ
cδ(1− γ)

+
3

γ − 3cδ

This completes the proof.

Lemma 4.4. Given ~α satisfying σK−1

δK−1
≤ D and δk+1 < γδk, we can find ~α′ such that such the corresponding

f ′,L′, δ′, σ′ satisfy f(x) ≤ 5
2f
′(x), L′ = O(L), δ′k+1 < γδ′k, and σ′k < γσ′k+1 for all k.

Proof. The proof follows Lemma 4.3 but moves backwards through the pipes rather than forwards.

1. Deletion Step: Let k be the highest index such that σk−1 ≥ γσk, and l > 1 the smallest integer such that
σk−l <

2γ
5 σk. Such an l must exist because σ0 = 0. Remove pipes k − l + 1, . . . , k − 1, and replace

them with the cheaper of pipes k − l and k.

2. Rotation Step: As in Lemma 4.3, f(x) may no longer be a linear combination of termsAi(x) because the
new indifference point may not be a power of 2. We use a similar procedure as before to remedy this.
Hold pipe k’s cost for 2p(k) flow fixed, and reduce σk while increasing δk to maintain the invariant
until k and k− l meet at a power of 2. Geometrically we are rotating y = σk+ δkx counter-clockwise
around (2p(k), σk + δk2p(k)). Let σ′k, δ′k be the new parameters. Note that ~α′ and L′ are now well-
defined.

First, we analyze the change to σk and δk required by the rotation step and use this result to prove the
constraints on both the σ’s and δ’s are satisfied at the end without changing f(x) too much.

Claim: After rotation σ′k ≥
2
5σk, and δ′k ≤

8
5δk.

Suppose the unmodified pipe k and k− l meet at g = σk−σk−l
δk−l−δk . We will bound the adjustment required

to guarantee they meet before g
2 . Reduce σk to 2

5σk = σ′k. The modified pipe k has the same cost as
the old at 2p(k). If k is the final pipe then from Lemma 4.2 we know D = 2p(k) ≥ σk

δk
. Otherwise, pipe

k costs the same as k + 1 at 2p(k), so we have that 2p(k) = σk+1−σk
δk−δk+1

≥ σk
δk

, using γσk+1 > σk (the

constraint fixed in the previous iteration). In either case δk2p(k) ≥ σk. Now,

σk + δk2p(k) =
2
5
σk + δ′k2

p(k)

⇒ δ′k2
p(k) =

3
5
σk + δk2p(k) ≤

(
1 +

3
5

)
δk2p(k) ⇒ δ′k ≤

8
5
δk

The constraints on the δs were satisfied before removing pipe k − 1, so δk−l > 1
γ2 δk. This implies

δk
δk−l − δk

≤ δk
1
γ2 δk − δk

≤ 1
4− 1

=
1
3

using γ < 1
2 . We combine this with the bound on δ′k to bound the change in δk−l − δ′k:

δk−l − δ′k ≥ (δk−l − δk)−
3
5
δk =(δk−l − δk)

(
1− 3

5
δk

δk−l − δk

)
≥(δk−l − δk)

(
1− 3

5
· 1
3

)
=

4
5
(δk−l − δk)
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Now we have enough information to bound the new switchover point.

σ′k − σk−l
δk−l − δ′k

=
2
5σk − σk−l
δk−l − δ′k

≤
2
5(σk − σk−l)
δk−l − δ′k

≤
2
5(σk − σk−l)
4
5(δk−l − δk)

=
1
2
σk − σk−l
δk−l − δk

=
1
2
g

There must be a power of 2 between g
2 and g, so we need to reduce σk by at most a factor of 2

5 . Finally,
note that pipes 0 and 1 meet no sooner than 1, and k > 1 since it is always true that γσ1 > σ0 = 0.
Therefore g > 1, and hence the new changeover point is at least 1, so we do not need to worry about
a term A−1.

Claim: When the procedure finishes δ′k+1 < γδ′k and σ′k < γσ′k+1 for all k.

We chose l such that σk−l <
2γ
5 σk, so σk−l < γσ′k. Before starting, we had γ2δk−l > γδk−1 > δk,

and γ < 1
2 , which implies δ′k ≤

8
5δk <

8
5γ

2δk−l < γδk−l. Note that the rotation step does not break
any previously-satisfied constraints on larger k’s.

Claim: For all x, f(x) ≤ 5
2f
′(x).

Only 1 round affects the interval (2p(k−l−1), 2p(k)). Removing pipes only increases f(x), and if we
adjust σk, then it decreases by a factor of at most 2

5 , while δk increases, so f ′(x) ≥ 2
5f(x).

Now we analyze the increase in L. First, unlike in Lemma 4.3, the rotation step works against us, and
we need to bound the increase.

Claim: Rotation only increases L by an O(1)-factor.

When adjusting pipe k, we increase δk without changing δk+1, which increases αp(k). We have that
αp(k) ≥ (1− γ)δk, and δ′k ≤

8
5δk, so

α′p(k) = δ′k−δk+1 ≤ (δk−δk+1)
(

1 +
3
5

δk
δk − δk+1

)
≤ αp(k)

(
1 +

3
5

δk
δk(1− γ)

)
=

8− 5γ
5(1− γ)

αp(k)

causing L to increase by at most 8−5γ
5(1−γ) .

Second, we need to bound the increase in L caused by removing pipes. Let K ′ be the number of iter-
ations and final pipes and α′p′(0), . . . , α

′
p′(K′−1) the resulting non-zero α’s. Iteration k, for 1 ≤ k ≤ K ′,

deletes pipes sk+1+1, . . . , sk−1 which removesαp(sk+1), . . . , αp(sk−1). LetLk =
∑sk−1

i=sk+1
αp(i)Ap(i)(T ∗p(i))

be the amount these contribute toL. Since it moves backwards through pipes the indices of new pipes are not
fixed yet, but as labeled at the end, round k ensures σ′j < γσ′j+1 and creates a term α′p′(j) where j = K ′−k.

The rotation step reduces both α′p′(j) and p′(j) which can only help in this step, and we have already
bounded the increase in α′p′(j+1) due to rotation, so we assume that no rotation is needed. This implies

α′p′(j) = δsk+1
− δsk =

∑sk−1
i=sk+1

αp(i). As in Lemma 4.3 we need to ensure that too much α-mass does not
move too high.

Let cσ < 2γ
5 be a small constant. We need to consider two cases again: either σsk+1

< cσσ
′
j+1 or

σsk+1
≥ cσσ′j+1.

Case 1: σsk+1
< cσσ

′
j+1.

Intuitively, this means σsk+1+1 is much larger than σsk+1
because σsk+1+1 ≥ 2γ

5 σ
′
j+1, so by the time

pipe sk+1 catches up with pipe sk+1 + 1 or any later pipe, it has already covered an O(1)-fraction
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of the distance to 2p
′(j). Therefore, pushing mass from up to Ap′(j)(T ∗p′(j)) increases L by only a

constant factor.

We bound 2p
′(j) by bounding the cost to which pipe sk+1 must grow before switching pipes. Before

removal the old pipe sk − 1 crossed the new j + 1 at 2p(sk−1) =
σ′j+1−σsk−1

δsk−1−δ′j+1
≤ σ′j+1

1
γ
δ′j+1−δ′j+1

≤ σ′j+1

δ′j+1
,

so σ′j+1 + δ′j+12
p(sk−1) ≤ 2σ′j+1. Pipe sk+1’s cost increases faster than sk − 1’s and surpasses sk’s

cost before 2p(sk−1). Therefore σ′j+1 + δ′j+1g ≤ 2σ′j+1.

We know σsk+1+1 ≥ 2γ
5 σ
′
j+1 or else it would not have been removed. When sk+1 intersects sk+1 + 1

at 2p(sk+1) it has grown from σsk+1
to at least σsk+1+1 and therefore has covered at least

σsk+1+1 − σsk+1

2σ′j+1

≥
2γ
5 σ
′
j+1 − cσσ′j+1

2σ′j+1

=
2γ − 5cσ

10

fraction of the distance to the indifference point between sk+1 + 1 and sk. Therefore

2p(sk+1) ≥ 2γ − 5cσ
10

2p
′(j) ⇒ Ap′(j)(T

∗
p′(j)) ≤

10
2γ − 5cσ

Ap(sk+1)(T
∗
p(sk+1))

Every other affected αp(i) is pushed up less than αp(sk+1), so

α′jAp′(j)(T
∗
p′(j)) =

sk−1∑
i=sk+1

αp(i)Ap′(j)(T
∗
p′(j))

≤
sk−1∑
i=sk+1

αp(i)

(
10

2γ − 5cσ
Ap(i)(T

∗
p(i))

)
=

10
2γ − 5cσ

Lk

Case 2: σsk+1
≥ cσσ′j+1.

In this case pipes sk+1 and sk+1 + 1 may meet very early, and Ap′(j)(T ∗p′(j)) could be much bigger
than Ap(sk+1)(T ∗p(sk+1)). Note that we are never in this case when σsk+1

= 0. We have that

σ′j+1 + δj+12p
′(j) = σsk+1

+ δsk+1
2p
′(j)

⇒ α′p′(j) = δsk+1
− δ′j+1 =

σ′j+1 − σsk+1

2p′(j)
≤
(

1
cσ
− 1
)
σsk+1

2p′(j)

After the next round—which we know occurs because σsk+1
6= 0— σsk+2

will be the pipe preceding

σsk+1
(which is σ′j). Using σsk+2

< γσsk+1
, it is easy to see that σsk+1

<
σsk+1

−σsk+2

1−γ and from the

formula for σsk+2
we have σsk+1

− σsk+2
=
∑sk+1−1

i=sk+2
αp(i)2p(i)

Combining the previous inequalities,

α′p′(j) ≤
(

1− cσ
cσ

)
σsk+1

2p′(j)
≤
(

1− cσ
cσ

)(
σsk+1

− σsk+2

1− γ

)
1

2p′(j)

≤ 1− cσ
cσ(1− γ)

sk+1−1∑
i=sk+2

αp(i)2
p(i)−p′(j)
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Now we can apply Lemma 4.1 to finish the bound:

α′p′(j)Ap′(j)(T
∗
p′(j)) ≤

1− cσ
cσ(1− γ)

sk+1−1∑
i=sk+2

αp(i)2
p(i)−p′(j)Ap′(j)(T

∗
p′(j))

≤ 1− cσ
cσ(1− γ)

sk+1−1∑
i=sk+2

αp(i)Ap(i)(T
∗
p(i)) =

1− cσ
cσ(1− γ)

Lk+1

Therefore we can charge the increase in Lk this iteration to Lk+1 used in the next iteration.

For a particular chunk Lk of L, round k’s increase may be bounded by a 10
2γ−5cσ

-factor increase and
round k − 1 may be bounded by a 1−cσ

cσ(1−γ) -factor increase. Each charge only occurs once. The rotation step

adds another factor of 8−5γ
5(1−γ) on top of this. Therefore, the total growth of L is at most

8− 5γ
5(1− γ)

(
1− cσ

cσ(1− γ)
+

10
2γ − 5cσ

)
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