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Abstract

Graphs with bounded highway dimension were introduced by Abraham et al. [SODA 2010]
as a model of transportation networks. We show that any such graph can be embedded into a
distribution over bounded treewidth graphs with arbitrarily small distortion. More concretely,
given a weighted graph G = (V, E) of constant highway dimension, we show how to randomly
compute a weighted graph H = (V, E’) that distorts shortest path distances of G by at most
a 1+ e factor in expectation, and whose treewidth is polylogarithmic in the aspect ratio of G.
Our probabilistic embedding implies quasi-polynomial time approximation schemes for a number
of optimization problems that naturally arise in transportation networks, including Travelling
Salesman, Steiner Tree, and Facility Location.

To construct our embedding for low highway dimension graphs we extend Talwar’s [STOC 2004]
embedding of low doubling dimension metrics into bounded treewidth graphs, which generalizes
known results for Euclidean metrics. We add several non-trivial ingredients to Talwar’s tech-
niques, and in particular thoroughly analyse the structure of low highway dimension graphs.
Thus we demonstrate that the geometric toolkit used for Euclidean metrics extends beyond the
class of low doubling metrics.

1 Introduction

In [14, 15], Bast et al. studied shortest-path computations in road networks and observed that such
networks are highly structured: there is a sparse set of transit or access nodes such that when
travelling from any point A to a distant location B along a shortest path, one will visit at least one
of these nodes. The authors presented a shortest-path algorithm (called transit node routing) that
capitalizes on this structure in road networks and demonstrated experimentally that it improves
over previously best algorithms by several orders of magnitude. Motivated by Bast et al.’s work
(among others), Abraham et al. [1, 2, 3] introduced a formal model for transportation networks and
defined the notion of highway dimension. Informally speaking, an edge-weighted graph G = (V, E)
has small highway dimension if, for any scale r > 0 and for all vertices v € V, shortest paths of
length at least r that are close (in terms of r) to v are hit by a small set of hub vertices. In the
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following formal definition, if dist(u,v) denotes the shortest-path distance between vertices u and v,
let By (v) = {u € V|dist(u,v) < r} be the ball of radius r centred at v. We will also say that a path
P lies inside By(v) if all its vertices lie inside B, (v).

Definition 1.1. The highway dimension of a graph G is the smallest integer k such that, for some
universal constant ¢ > 4, for every r € R, and every ball B.,(v) of radius cr, there are at most k
vertices in B, (v) hitting all shortest paths of length more than r that lie in B, (v).

Rather than working with the above definition directly, we often consider the closely related
notion of shortest path covers (also introduced in [1]).

Definition 1.2. For a graph G and r € R, a shortest path cover spc(r) C V is a set of hubs that
intersect all shortest paths of length in (r,cr/2] of G. Such a cover is called locally s-sparse for
scale r, if no ball of radius ¢r/2 contains more than s vertices from spc(r).

In particular, a graph with highway dimension k£ can be seen to have a locally k-sparse shortest
path cover for any scale r [1] (using the same constant ¢ in Definition 1.1 and Definition 1.2). In
both definitions above, Abraham et al. [1] specifically chose ¢ = 4 but also note that this choice
is, to some extent, arbitrary. In the present paper, the flexibility of being able to choose a slightly
larger value of ¢ is crucial as we will explain shortly. In the following, we will let A = ¢ — 4 and
call it the violation of Abraham et al.’s original definition. While we believe that a small positive
violation does not stray from the intended meaning of highway dimension, we also point out that
there are graphs whose highway dimension is highly sensitive to the value of ¢, as we explain in
Section 9. Hence this is not an entirely innocuous change.

Abraham et al. [1, 2, 3] focused on the shortest-path problem and formally investigated the
performance of various prominent heuristics as a function of the highway dimension of the input
graph. They also pointed out that, “conceivably, better algorithms for other [optimization] problems
can be developed and analysed under the small highway dimension assumption”. This statement is
the starting point of this paper.

We study three prominent NP-hard optimization problems that arise naturally in transportation
networks: Travelling Salesman, Steiner Tree and Facility Location (see Section 8 for formal defini-
tions). Each of these was first studied in the context of transportation networks, and as we will
show they admit quasi-polynomial time approximation schemes (QPTASs) on graphs with bounded
highway dimension. Our work thereby provides a complexity-theoretic separation between the class
of low highway dimension graphs and general graphs, in which the aforementioned problems are
APX-hard [23, 25, 29].

Technically, we achieve the above results by employing the powerful machinery of metric space
embeddings [12, 26]. Specifically, for any ¢ > 0 we probabilistically compute a low-treewidth graph
H on the same vertex set as the input graph G such that the shortest-path distance between any
two vertices in H is lower bounded by their distance in G, and, in expectation, upper bounded by
1 + ¢ times their distance in G. The latter factor by which the distances are bounded from above
is called the distortion or stretch of the embedding H (see Section 2 for formal definitions). The
following is the main result of this paper, where the aspect ratio is the maximum distance of any
two vertices divided by the minimum distance between any vertices.

Theorem 1.3. Let G be a graph with highway dimension k of violation A > 0, and aspect ratio o.

For any € > 0, there is a polynomial-time computable probabilistic embedding H of G with trecwidth
k

(log a)o(logQ(a)//\) and expected distortion 1+ €.

Low highway dimension graphs do not exclude fixed-size minors and therefore do not have low
treewidth [35]: the complete graph on vertices {1,...,n} where each edge {i,;j} with i > j has



length ¢!, has highway dimension 1. The example also shows that the aspect ratio of a low-highway
dimension graph can be exponential. Using standard techniques, we will show that the aspect ratio
may be assumed to be polynomial for our considered problems when aiming for 1+ ¢ approximations.
Existing algorithms for bounded treewidth graphs [6, 16] then imply QPTASs on graphs with
constant highway dimension (see Section 8 for more details).

While Travelling Salesman, Facility Location, and Steiner Tree are APX-hard in general graphs,
improved algorithms are known in special cases. For example, polynomial time approximation
schemes (PTASs) for all three of these problems are known if the input metric is low-dimensional
Euclidean or planar [5, 7, 9, 16, 18, 31, 34]. Talwar [38] also showed that the work in [7, 9, 34]
extends (albeit with quasi-polynomial running time) to low doubling dimension metrics. Bartal
et al. [13] later presented a PTAS for Travelling Salesman instances in this class.

The concept of doubling dimension was studied by Gupta et al. [30], and captures metrics that
have bounded growth. Formally, a metric space (X, dist) has doubling dimension d if d is the smallest
number such that every ball of radius 2r is contained in the union of 2¢ balls of radius . The class
of constant doubling dimension metrics strictly generalizes that of Euclidean metrics in constant
dimensions. Doubling dimension and highway dimension (as defined here) are incomparable metric
parameters, however: Abraham et al. [1] noted that grids have doubling dimension 2 but highway
dimension ©(y/n), while stars have doubling dimension ©(logn) and highway dimension 1.

We briefly note here that there are alternative definitions of highway dimension (see Section 9
for a detailed discussion). In particular, the more restrictive definition in [3] implies low doubling-
dimension, and hence Talwar [38] readily yields a QPTAS for the optimization problems we study.
Our choice of definition is deliberate, however, and motivated by the fact that Definition 1.1 captures
natural transportation networks that the more restrictive definition does not. For instance, typical
hub-and-spoke networks used in air traffic models are non-planar and have high doubling dimension,
since they feature high-degree stars. This immediately renders them incompatible with the highway
dimension definition in [3]. Nevertheless they have low highway dimension by Definition 1.1, since
the airports act as hubs, which become sparser with growing scales as longer routes tend to be
serviced by bigger airports. We also prove in Section 9 that our definition is a strict generalization
of the one in [3]: any graph with highway dimension k according to [3] has highway dimension O(k?)
according to Definition 1.1, while a corresponding lower bound is not possible in general.

Our results not only provide further evidence that the highway dimension parameter is useful in
characterizing the complexity of graph theoretic problems in combinatorial optimization. Importantly,
they also show that the geometric toolkit of [7, 9, 34] extends beyond the class of low doubling
dimension metrics, since the proof of Theorem 1.3 heavily relies on the embedding techniques
proposed in [38].

1.1  Our techniques

The embedding constructed in the proof of Theorem 1.3 heavily relies on previous work by Talwar [38]
but needs many non-trivial new ideas, a few of which we sketch here.

Talwar’s embedding algorithm first computes a so called split-tree decomposition, a certain
laminar family of subsets of the set X of points underlying the given metric space. Initially, this
family contains just one element, the set X itself. In each step, the algorithm picks a non-singleton
leaf C' of the family, partitions it into sets C1, ..., C, of random diameter roughly half of that of C,
and adds these to the family. The algorithm continues until all the leaves in the family are singletons.
An element C of the computed decomposition is commonly referred to as a cluster.

Each cluster C of the split-tree decomposition is associated with a set of net points; net points
are well spaced in C', and each point in C' is close to at least one of these. For each cluster, only the



edges between the net points of its child clusters are kept to form the embedding. The shortest
path between two points can then be approximated by a path that exits each cluster only via the
net points. The error introduced due to the shifting of points on a path to net points, as well as the
total distortion, can be bounded as the sum of errors over all levels of the split-tree decomposition.
In the tree decomposition (see Section 2 for formal definitions) of the resulting embedding, each
bag corresponds to a cluster and consists of the net points of its child clusters. Using the bounded
doubling dimension assumption, the number of child clusters and number of net points per cluster
can be bounded by constants depending on the doubling dimension and the desired stretch. This in
turn bounds the embedding’s treewidth.

We want to construct a similar recursive decomposition for - =
metrics with low highway dimension, but this turns out to be e 3e) Lo /) e .
non-trivial. In order to obtain a decomposition we observe -~ ,’g?\‘/r . P
that the hubs in the shortest path cover induce a natural ®)>r P el
clustering of the vertices in G for any scale r (see Figure 1). e \- o5 ’
Each vertex v € V whose distance from any hub is larger than ..; . ;"'.'".' :<,
2r is said to belong to a town that is contained in the ball e 2 e .' X ee

of radius r centered at v. All vertices that are not part of a ™. ... Lo
town (and hence at distance no more than 2r from some hub)

. . Fi 1: Thes 1 los
are said to be part of the sprawl. We will show that towns lgure e sprawl (enclosed by

. dotted lines) contains vertices close to
are nicely separated from other towns and the sprawl and that ;¢ (crosses). Each town (dashed

the degree of separation is highly sensitive to the choice of ¢ circles) has small diameter and is far
in Definition 1.1. It turns out that choosing ¢ = 4 yields a from other vertices.
separation that is just barely too small.

Based on this clustering, we compute a hierarchical decomposition of the graph that we call
the towns decomposition. It is a laminar family of towns and recursively separates the graph into
towns of decreasing scales, and our embedding is computed recursively on this decomposition.
The towns decomposition is analogous to the quad-tree decomposition in PTASs for Euclidean
metrics [7, 8, 9, 10] or the split-tree decomposition for low doubling dimension metrics [38], though
the particulars differ greatly. At a high level, towns look similar to clusters in Talwar’s split-tree
decomposition. However, while in Talwar’s split-tree decomposition, clusters have a relatively small
number of child clusters, towns can contain a very large number of child towns. As it turns out,
however, these child towns are connected through hubs of higher scales, which can be chosen in a way
such that they have bounded doubling dimension. We can therefore apply Talwar’s decomposition
technique to these connecting hubs. We then recursively construct a low treewidth embedding for
each child town and attach these embeddings to the embedding of the connecting hubs. The details
are described in Section 4.

The most intricate part of our result is to prove low doubling dimension of these “connecting
hubs”, which are chosen as follows. We prove that to preserve all distances within a town T it
suffices to connect embeddings of T”’s child towns in the towns decomposition via a carefully chosen
set of so-called core hubs within T'. To prove low doubling dimension, the general idea is to rely on
the local sparsity of the shortest path covers (see Figure 2): by definition, the core hubs lie in the
sprawls of various scales, and for scale r the sprawl can be covered by balls of radius 2r around
the hubs of the shortest path cover. In a low highway dimension graph, any ball B of radius cr/2
contains only a small number of hubs. Hence, to bound the doubling dimension, we attempt to
use these hubs as centers of balls of smaller radius to cover the core hubs. These balls have radius
2r < ¢r/2, and hence this scheme can be applied recursively in order to cover the core hubs in B
with balls of half the radius. Several issues arise with this approach though. For instance, part of
the sprawl for scale r in B might be covered by balls centered at hubs outside of B. However a key



insight of our work is that in fact the number of hubs in the vicinity of a ball is also bounded when
using Definition 1.1 for the highway dimension (see Lemma 6.2).
Another obstacle when trying to bound the doubling di-
mension of the core hubs is that, unlike the nets in Talwar’s
split-tree decomposition, the hubs do not form a hierarchy,
i.e., a hub at some scale may not be a hub at a lower scale.
Nevertheless, we show that core hubs at different scales can
be aligned: they can be shifted slightly in order to obtain a
nested structure. We are able to show that this alignment
process does not affect the target stretch of our embedding and,
most importantly, ensures that the resulting set of approzimate Figure 2: The sprawl (enclosed by
core hubs within T has small doubling dimension. We may dotted lines) intersecting a ball B of
thus apply Talwar’s [38] embedding of low doubling dimension radius cr/2 (black) can be recursively

metrics into bounded treewidth graphs to the approximate core covered by balls of radius 2r (grey)
centered at hubs on scale r (crosses).

hubs. For this the number of hubs in the
vicinity of B needs to be bounded.

1.2 Related work

The highway dimension concept was introduced by Abraham et al. [1] who showed that the efficiency
of certain shortest-path heuristics can be explained with this parameter. Follow-up papers [2, 3]
introduced alternative definitions and showed that it is possible to approximate the highway
dimension k within an O(log k) factor assuming that shortest paths are unique. For the p-Center
problem the embedding techniques given in this paper are not applicable since the objective function
is non-linear. Instead, in [27] a parameterized approximation for this problem on low highway
dimension graphs is presented. Bauer et al. [17] show that for any graph G there exist edge lengths
such that the highway dimension is Q(pw(G)/logn), where pw(G) is the pathwidth of G. Also
Kosowski and Viennot [32] consider the highway dimension and compare it to the related skeleton
dimension.

In the seminal work of Bartal [11, 12] it was shown that any graph can be embedded into a
distribution over trees with an expected polylogarithmic stretch. The stretch bound was later
improved to O(log n) by Fakcharoenphol et al. [26], which is the best possible. These techniques led
to the embedding of low doubling dimension metrics into bounded treewidth graphs by Talwar [38],
which forms a major ingredient in our result. Another generalization is that of Chan and Gupta [22],
who showed how to embed a metric of low correlation dimension into a metric of bounded treewidth.
It it worth noting that the highway dimension cannot be bounded in terms of the correlation
dimension (due to the complete graph example described above). In terms of lower bounds, there are
graphs [20, 21] with treewidth ¢, which cannot be embedded into distributions over graphs excluding
minors of size ¢t — 1, without incurring an expected stretch of (logn). The authors also show that
embeddings of planar graphs into bounded treewidth graphs must incur logarithmic distortions.

2 Embeddings for low doubling dimension metrics

Next we formally define the treewidth and summarize the properties of Talwar’s [38] embedding for
low doubling dimension metrics that we require for our construction. More details will be given in
Section 5, which are needed for the analysis of the stretch of our embedding.

Let G = (V, E) be a graph. For u,v € V we denote the length of the shortest path between u
and v by dist(u, v) and the distance between two sets S,T C V by dist(S,T") = minyeg yer dist(u, v).
If the metric used for distances is ambiguous we specify the graph in the subscript, such as distg(u, v)



or distg(u,v). The diameter diam(-) of a graph or set of vertices is the maximum distance between
any two vertices. The treewidth of a graph measures how close the graph is from being a tree. A
tree decomposition of G consists of a tree T whose vertices are labelled by subsets of V' that are
commonly referred to as bags. We will often identify the bags with the vertices of the tree and talk
about a “tree of bags”. Bags satisfy certain structural properties as is formalized in the following
definition.

Definition 2.1. A tree decomposition D of a graph G = (V, E) is a tree T each of whose vertices v
are labelled by a bag b, C V of vertices of G. We require the following properties:

(a) UveV(T) by =V,
(b) for every edge {u,w} € E there is a vertex v € V(T') such that b, contains both v and w, and
(c) for every v € V the set {u € V(T') : v € b,} induces a connected subtree of T'.

The width of the tree decomposition is max{|b,| —1 : v € V(T')}. The treewidth of a graph G is
the minimum width among all tree decompositions for G.

To construct our embedding we will mainly focus on the shortest path metric of the graph G.
We let the distance function of every considered metric be the function dist(:,-) of the underlying
graph. Though the treewidth is a property of a graph’s edge set, whereas doubling dimension is
a property of the metric it defines, Talwar [38] shows that low doubling dimension graphs can be
approximated to within 1 4+ ¢ by bounded treewidth graphs. Formally this means the following.

Definition 2.2. Let (X, dist) be a metric, and D be a distribution over metrics (X, dist’). If for
all z,y € X, dist(z,y) < dist'(z, y) for each dist’ € D, and Eg;gpcpldist’(x,y)] < a - dist(z,y), then
D is an embedding with (expected) stretch or distortion a. If every dist’ € D is the shortest path
metric of some graph class G, then D is a (probabilistic) embedding into G.

The main result of Talwar [38] that we use for our embedding of low highway dimension graphs
into bounded treewidth graphs, is the following.

Theorem 2.3 ([38]). Let (X,dist) be a metric with doubling dimension d and aspect ratio .
For any € > 0, there is a polynomial-time computable probabilistic embedding H of (X,dist) with
treewidth (dlog(a)/e)PD and expected distortion 1+ ¢.

As described in the introduction, Talwar’s embedding employs a randomized split-tree decom-
position, which is a hierarchical decomposition of the vertices X of a metric into clusters of smaller
and smaller diameter. A cluster is a subset of X, which is partitioned into clusters of at most half
the diameter on the next lower level, so that the highest cluster is X itself and the lowest ones
are individual vertices. The geometrically decreasing diameters of the levels are set according to
a random variable. Each level of this hierarchy is associated with an index. Our construction of
the embedding for low highway dimension graphs also has levels associated with indices, but these
have different growth rates. To avoid confusion we will denote the levels of Talwar’s split-tree
decomposition with indices 1, j, etc., and ours with indices i, j etc.

The tree decomposition constructed from the split-tree has a bag for each cluster. The tree
on the bags exactly corresponds to the split-tree. Each bag contains a coarse set of points of the
cluster. More concretely it contains a net, defined as follows.

Definition 2.4. For a metric (X,dist), a subset ¥ C X is called a d-cover if for every u € X
there is a v € Y such that dist(u,v) < . A d-net is a J-cover with the additional property that
dist(u,v) > 0 for all vertices u,v € Y.



For a cluster C' on level i the corresponding bag contains a ©(£2¢/(dlog a))-net of C. For
every bag b the graph embedding contains a complete graph on the nodes in b with edge lengths
corresponding to distances in the metric. The net in each bag serves as a set of portals, through
which connections leaving the cluster are routed, analogous to those in [8].

3 Properties of low highway dimension graphs

We assume w.l.o.g. that every shortest path in our input graph is unique by slightly perturbing
edge lengths. This allows us to compute locally O(k log k)-sparse shortest path covers in polynomial
time [2] (or locally k-sparse covers in time n°*)). We show in Section 9 that computing the highway
dimension is NP-hard even for graphs with unit edge lengths, so in general approximations are
needed.

An important observation is that the vertices of low highway dimension graphs are grouped
together in all regions that are far from the hubs. This gives rise to our main observation on the
structure of low highway dimension graphs, as summarized in the following definition: for any scale
the vertices are partitioned into one sprawl! and several towns with large separations in between.

Definition 3.1. Given a shortest path cover spc(r) for scale r, for any vertex v € V' such that
dist(v, SPC(r)) > 2r, we call the set T'= {u € V|dist(u,v) < r} a town for scale r. The sprawl for
scale r is the set of all vertices that are not in towns.

Note that the vertices of the sprawl are at most 2r away from a hub, but there can be vertices
in towns that are closer than 2r to some hub, as long as the town has some other vertex that is
farther away. Note also that the towns are defined with respect to a shortest path cover spc(r),
and using two distinct shortest path covers will not always result in the same set of towns. We will
fix an inclusion-wise minimal shortest path cover spc(r) for any scale r and only consider towns
with respect to this cover. We summarize the basic properties of towns below.

Lemma 3.2. Let T be a town of scale r. Then diam(T') < r and dist(T, V' \T) > r. For any vertex
v of the sprawl of scale r, dist(v, sPc(r)) < 2r.

Proof. The bound on the distance from any vertex of the sprawl to the nearest hub follows
immediately from the definition of the towns. To prove that the diameter of a town T is at most r,
assume there are vertices u, w € T such that dist(u,w) > r. By Definition 3.1 we know there is a
vertex v € T such that dist(u,v) < r and dist(w,v) < r, so that dist(u,v) < 2r. This means that
the length of the shortest path between u and w lies in the interval (r, cr/2], as by Definition 1.1
the constant ¢ defining SPC(r) is at least 4. In particular, there is a hub h € SPC(r) that lies on this
shortest path. Assume w.l.o.g. that h is closer to w than to u, so that dist(h,w) < r. But then,
dist(h, v) < dist(h, w) + dist(w,v) < 2r, which contradicts dist(v,spc(r)) > 2r.

Similarly, we can prove that the distance of any vertex u of a town T to any vertex w outside of
T is more than r. Consider again the vertex v € T given by Definition 3.1, for which dist(u,v) < r,
dist(w,v) > r, and dist(v,spc(r)) > 2r. If we assume that dist(w,u) < r, then from the first
distance bound for u and v we get dist(w,v) < 2r. Together with dist(w,v) > r, this means that
the length of the shortest path P between w and v lies in the interval (r, cr/2], as by Definition 1.1
¢ > 4. Hence there is a hub h € spc(r) on P that is at most as far from v as w is, i.e. dist(v, h) < 2r.
However this contradicts dist(v,spc(r)) > 2r. O

We will exploit the structure given by Lemma 3.2 for growing scales to construct our embedding.

More concretely, we will consider scales r; = (¢/4)" for values ¢ € Ny and call i the level of the sprawl,



towns, and shortest path cover of scale ;. We choose our scales in this way since 2r; = ¢r;—1/2. As
a consequence, a ball of radius 2r; around a hub of level ¢ that covers part of the sprawl contains at
most s hubs of the next lower level ¢ — 1 if the shortest path covers are locally s-sparse. We will
exploit this in our analysis in order to bound the treewidth of our embedding.

Note that the scales are monotonically non-increasing if we choose ¢ < 4. As we shall see,
positive scale-growth is essential, however, for our algorithm as it allows us to argue that any two
disjoint towns are sufficiently separated.

Throughout this paper we will assume that the shortest path covers are inclusion-wise minimal.
By scaling we can assume that the shortest distance between any two vertices is slightly more
than ¢/2. Hence spc(rg) = () since there are no paths of length in (rg, cro/2]. In particular this
means that on level 0 there is no sprawl, and each vertex forms a singleton town. The highest level
we consider is m = [log,/, diam(G)]. At this level SPC(ry,) = () and hence the whole vertex set V
of the graph is a town.

We show next that towns of different levels form a laminar family 7. Due to this laminar
structure of towns we will use tree terminology such as parents, children, siblings, ancestors, and
descendants of towns in 7. Note that these family relations are with respect to the laminarity of 7
and not the levels on which towns exist. The root of the laminar family is the highest level town V.

Lemma 3.3. Given a graph G, the set T :={T CV | T is a town on level i € No} forms a laminar
family. Furthermore, any town T € T on level i either has 0 or at least 2 child towns, and in the
latter case these are towns on levels below 1.

Proof. Assume T is not laminar, in which case there are two towns 77 and 75 in T that cross, i.e.,
all of the sets T1 NTy, 171 \ Ta, and T3 \ 17 are non-empty. Assume that 77 is a town of level i, while
T; is a town of level j > i. Let v and w be two vertices of T} such that v € Ty but w ¢ T,. By
Lemma 3.2, dist(v, w) < diam(77) < r; and dist(v, w) > dist(T3, V' \ T2) > r; > r;—a contradiction.

For the second part, let T' be a town in the set 7 with a child 7”. Note that T'\ T" # 0, while
every vertex is a town on level 0. So there must be another town that is a child of 7. Now assume
there is a town T on level 7 with a child town 7" on level j > i. By Lemma 3.2, the diameter of T is
at most 7;, and any other child town of 7" must be at distance more than r; > r; from 7”. This
would mean that T only has one child town—a contradiction. O

The above lemma proves that the following procedure has a well-defined output: starting with a
town 1" on some level i, repeatedly remove child towns on level ¢ — 1 until only the sprawl remains.
Continue by removing all towns on level ¢ — 2, ¢ — 3, etc. from the remaining nodes until all nodes
have been removed. Then recurse on each of the removed child towns.

Starting the decomposition with town G on level log,. 4 diam(G), we refer to the resulting laminar
family T as the towns decomposition of G. Note that T partitions every town 1" € T, and although
T appears once in 7, T can be a town on multiple levels of the shortest path covers, if it is a
town with respect to both spc(r;) and SPC(r;+1). From now on we will consider the graph metric
(V,distg) induced by G instead of G itself. All properties of towns and sprawl, such as given by
Lemma 3.2 and 3.3, are still valid in the metric.

4 Constructing the embedding

We now describe our algorithm in more detail. PTASs for Euclidean and low doubling metrics [8, 38]
use hierarchical decompositions coupled with a small number of “portal” nodes: paths leaving a
cluster in the decomposition must do so via an appropriate portal, resulting in a small “interface”
between distinct clusters in the decomposition. Intuitively, the hubs are natural choices for portals,



since long paths through some ball must pass through a hub. However problems crop up almost
immediately because hubs are not guaranteed to be well-spaced or consistent between levels, and
although all long paths through a ball may be hit by portals, there may be many short paths that
go nowhere near one.

We overcome these difficulties by exploiting the properties of the towns decomposition. Lemma 3.2
guarantees that towns are isolated from both each other and the sprawl. Consequently, any
approximate shortest path between nodes in a town must remain within that town. The embedding
is constructed recursively on the metric using the structure of the towns decomposition 7. That is,
for a town T' € T we assume that we have already computed an embedding (and accompanying
tree decomposition) with expected stretch 1 + ¢ for each child town of 7. We then connect these
embeddings so that distances between them are preserved within a 1 + ¢ factor in expectation. This
gives an embedding for T and, since V itself is the root of the towns decomposition, eventually
yields an embedding for G.

The key insight that lets us connect the child towns of 7" is that there exists a set of so-called
approximate core hubs X7 in T with low doubling dimension that can serve as the crossroads through
which child towns connect. We will compute a low-treewidth embedding of the set X based on
Theorem 2.3 and connect the embeddings of the child towns to it. In particular, for every child
town T" we will identify a bag b of the tree decomposition of X7 containing hubs that are close to T".
We call b the connecting bag of T'. The embedding of T is constructed by connecting every vertex
in each child town to every hub in the corresponding connecting bag. As we show in Section 5,
this means that short connections between child towns can be routed directly through hubs in the
connecting bags. Long connections on the other hand can be routed through the embedding of the
core hubs X at only a small overhead.

The tree decomposition for 7" is constructed by connecting each
tree decomposition D7 for a child town T” to the corresponding ~ ~<
connecting bag b of the tree decomposition Dx for the hubs in Xp / o -\
(lines 29 to 31 in Algorithm 1). Even though this yields a tree of /0N T

bags containing all vertices of the town T', properties (b) and (c) of / \“/ ---------------- T\
Definition 2.1 might be violated by this initial attempt. As we will { _A (x o
show in Section 7, we need to make two modifications to the bags: \ O X oAl
first we need to add all vertices of b to each bag of Dps. Since the \ o
treewidth of Dx is bounded by Theorem 2.3, this does not increase \\”'q-_..l ............... 5 /
the sizes of bags by much. Second, we also need to add all hubs Ci=T >~ _ -7

of X7 within the child town T’ to each bag of D7+, as well as to b Fi .
igure 3: The cores of three

and all descendants of b in Dx. To bound the growth of the bags jigerent levels of town T (en-
in this step, we need to bound the number of hubs in X7 in a child ¢losed by dotted lines for levels
town T”, which we do in Section 7. i < j). Note that some hubs of

The set X is an approximate hub set of T. To define the level j —2 (small crosses) lie in
set properly we need some additional insights on the structure of towns of level j—1 (larger dashed
hubs of different levels in T. The core of T is the intersection of Circles), and these are not core
sprawls formed by removing all child towns of T" above a given level hubs.
(c.f. Figure 3):

Definition 4.1. Let T € T be a town on level j, and let S; be the sprawl of V on level ¢ < j. The
core C; of T' on level i is inductively defined as follows: C; =T, and C; = ;N Cj41 for i < j — 1.
The core hubs of T are given by the set Uf;ll C; Nspc(ry).

By this definition a town 7" on level j can be partitioned into its core on level ¢ and its child
towns on levels {i,...,7 — 1}. Observe also that the set system {C;}/_, given by the cores forms a



chain, i.e. C;—1 C C;. Intuitively, the core hubs should have low doubling dimension: if the shortest
path covers are locally s-sparse, then in a ball around a hub at level ¢ there will be at most s hubs
in that ball on level 4 — 1, and the balls of half the radius around these hubs cover the core on that
level (cf. Figure 2). In fact one can show that the doubling dimension of the core hubs is fairly
small but unfortunately not small enough for our purposes. In particular, we need the doubling
dimension to be independent of the aspect ratio « of the metric. To circumvent this issue, roughly
speaking, we shift each core hub so that it overlaps with lower level core hubs if possible, making
the hubs nested to some degree. However, in order to preserve distances we will only shift them by
at most an ¢ fraction. This shifting produces the set X1 of approximate core hubs of T, which we
use to construct our core embedding. Note that we do not use the approximate core hubs X7 to
define our towns decomposition, only to produce a low-treewidth core embedding (see lines 7 and 3
in Algorithm 1). We rely on the following non-trivial properties, which require an intricate proof
provided in Section 6.

Theorem 4.2. Let T be a towns decomposition of a graph of highway dimension k, given by locally
s-sparse shortest path covers on all levels with violation X > 0. For any town T € T of a level j
there exists a polynomially computable set of approximate core hubs Xp C T such that

e for any core hub h € C; Nspc(r;) of T on level i € {1,...,5 — 1}, there is a vertex h' € Xp
with distg(h,h') < er;, and

e the doubling dimension of Xt is d = O(log(%(l/e))/)\).

From now on, we use d to denote the above doubling dimension bound for X7. Our algorithm
computes the low-treewidth embedding Hp of T by explicitly computing its tree-decomposition
D7p. The latter is constructed by connecting the recursively computed tree decompositions D7 for
child towns T" of T to the tree decomposition Dy of an embedding Hyx for the metric induced by
the approximate core hubs X7. For this to work we need to make sure that the approximate core
hubs contained in the same child town 7" do not end up in different bags in the tree decomposition
D7 of Hp. Our solution is to pick a representative core hub for each child town T”. Specifically,
let Y7 C X7 contain one arbitrary approximate core hub for each child town T” of T' for which
T' N Xp # (). We say that a vertex v € Y of a child town T” represents the nodes in X N1’
(including v itself). The sub-metric Y7 of X inherits the doubling dimension bound of Theorem 4.2,
since the doubling dimension of any sub-metric is at most twice the doubling dimension of the
original metric. This was already noted in [30], and we give a formal proof of this fact in the
following. We state this observation slightly more general than we need it here, as we will reuse it
in Section 6: in the next lemma the metric Z is not required to have bounded doubling dimension,
but the premise is clearly fulfilled if it does.

Lemma 4.3. Let (Z,dist) be a metric and Z' C Z. If for every ball Ba.(v) C Z of radius 2r there
are at most 2° balls B, (u;) C Z, with centers u; and each with radius r, such that their union
contains all vertices in Bo.(v) N Z', then the doubling dimension of (Z',dist) is at most 26.

Proof. Any ball in (Z’,dist) corresponds to a ball in (Z,dist) with a center vertex in Z’. Pick a
ball By, (v) C Z with radius 27 and v € Z’. For each of the 2° balls B,.(u;) that exist for B, (v),
there again are at most 2% balls B, j2(w;ij) € Z with radius 7/2 whose union contains B;.(u;) N Z'.
Pick any vertex wj; € Z’ (if any) in such a ball B, j5(w;;) and consider the ball B, (w;;) of double
the radius. This ball must contain B,./>(w;;). Doing this for all such balls B, j(w;;) gives at most
220 balls, each with a center vertex in Z’, such that their union covers Bo,(v) N Z’. Hence the ball
Bo,(v) N Z'in (Z',dist) is covered by at most 2%° balls in (Z’,dist) by intersecting each of these

balls in (Z, dist) with Z'. O
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By Lemma 4.3 the doubling dimension of Y7 is at most 2d, and so we can compute an embedding
Hy for the metric (Y7, distg) with bounded treewidth by Theorem 2.3. Given Hy together with a
tree decomposition Dy we convert it into an embedding Hx of X together with a tree decomposition

Algorithm 1: Compute embedding H with tree decomposition Dy of graph G
fori=0,...,[log.,diam(G)] do
L sPC(r;) « locally O(klog k)-sparse minimal shortest path cover // See [2]

N =

3 T < towns decomposition based on SPC(r;)
(H, Dg) = Embed(V, [log,/, diam(G)]) // Recursively compute embedding H with
tree decomposition Dpg

IS

5 function Embed(T,j) // Low-treewidth embedding of town T at level j
6 if j =0 then return (7,7) // A town is a singleton at level 0

7 Compute approximate core hubs X7 of T' // According to Theorem 4.2
8 Towns < () // Set of embeddings of child towns of T

9 fori=j—1,...,0do // Recurse on child towns

10 foreach child town T € T of T on level i do

11 (HT/, DT/) — Embed(T’, ’L)

12 L Add (Hpr, Dyv,i) to Towns

// Compute embedding Hx for X7 with tree decomposition Dx

13 Y7 < one node in X7 NT” for each child town T” of T for which X7 NT" # ()
14 (Hy,Dy) < Talwar(Yp,e') // Embedding of Yp with distortion 1+¢&'
15 (Hx, Dx) < expand each vertex in Hy, Dy into all hubs it represents in X
16 Hr < Hx // Initially the embedding Hp of T is Hx

17 Dy < Dx // Initially the tree decomposition Dy of T is Dx

18 root(Dr) < root(Dx) // Set the root bag of the tree decomposition

19 foreach (Hys, Dy, 1) in Towns do // Join towns to Hp
// Find the connecting bag b for 7"

20 T" + closest sibling town to 7" in T'

21 i + level for which distg(T7",T") € (rs, rit1]

22 h < closest hub in X7 to T”

23 1 < [logy ;]

24 J < highest level of Dx

25 C < cluster containing h at level | = min{j,7 + [logy(d/¢)]} in split-tree of X7

26 b < bag in Dx corresponding to cluster C
// Comnect T" to Xy in the embedding

27 Add all vertices and edges of Hys to Hp

28 Add edge {u,v} with length distg(u,v) to Hp for each pair u € T, v € b
// Add Dy to the tree decomposition Dr of Hr

29 Merge Dy and Dp by connecting root(Dpv) with b

30 Add all vertices of b to each bag of Dy

31 Add all hubs of X7 NT" to each bag of D/, and also to b and all descendants of b
in Dx (but not the descendants of b in Dp that are bags of some Dy~ for some child
town 7" £ T of T')

32 return (Hr, Dr)

11



Dx by replacing a vertex v € Yp with all approximate core hubs that v represents (see lines 13 to 15
in Algorithm 1). In particular, the tree decomposition Dx of Hx is obtained from the decomposition
Dy of Hy by replacing v € Y7 with all the hubs it represents in each bag containing v. For every bag
b of Dx the embedding Hx contains a complete graph on the vertices of b, where the length of an
edge {u,v} is the distance distg(u,v) in G. It is easy to see that Dy is a valid tree decomposition,
i.e., it satisfies all properties of Definition 2.1. We will show in Section 7 that the number of
approximate core hubs in each child town is bounded, and therefore the growth of the treewidth
caused by replacing a vertex by its represented hubs is also bounded. We also need to bound the
extra distortion incurred by going from Hy to Hx and show that a 1+ ¢ distortion of Hy translates
into a 1 + O(e) distortion of Hx, which entails reproving the relevant parts of Theorem 2.3.

After computing the embedding Hx for X7, we connect each recursively computed embedding
for the child towns of T (line 11 of Algorithm 1) to Hx to form the final embedding H7. We need
to argue that Hx exists every time there are child towns to connect. From Lemma 3.3 we know that
T has at least two child towns if it has any. In Section 5 we will show (in Lemma 5.1) that there is
a core hub A in T on any shortest path between a pair of children towns. By Theorem 4.2, there is
an approximate core hub in X7 close to h. Since X7 is non-empty, Hx exists. Once we compute
Hx we connect every vertex of a child town 7" to all hubs in a bag b of the tree decomposition
Dx of Hx. This bag b is logy(d/e) levels higher in the split-tree decomposition than the level
corresponding to the shortest distance that needs to be bridged from 7" to any other vertex in 7. At
the same time we will make sure that the net defining b is fine enough so that lengths of connections
passing through b are preserved to a sufficient degree. This way, short connections from 7" to core
hubs with length up to O(1/¢) times the separation of 7" are preserved in expectation by routing
through the hubs in b. Connections to more distant hubs can be rerouted from a hub close to T”
through the embedding Hx with only an € overhead, as we will prove in Section 5.

Recall that levels of the split-tree decomposition are denoted by i, j etc. To determine the level
of the bag b, note that due to our growth rate of ¢/4 =1+ A\/4 of the levels (and the assumption
that the violation \ is at most 4) the intervals (r;, 2r;] of the shortest path covers might overlap. As
described in lines 20 to 26 of Algorithm 1, let ¢ be the level for which the distance between T" and its
closest sibling town lies in the interval (r;,7;11], and let i = [log, 7| be the corresponding level of the
split tree decomposition of Dx. Now let h € X7 be the closest approximate core hub to 7" (which
might lie inside of T”). If j is the highest level of Dy, i.e. it is the level of the cluster containing all
of X, then the bag b of the tree decomposition Dx is the one on level [ = min{j,i + [logy(d/e)]}
for which the corresponding cluster C' contains h. All edges between vertices of 7" and b are added
to the embedding for T" (lines 27 and 28 of Algorithm 1), and we call the bag b the connecting bag
for T".

Note that there are several parameters € we could adjust independently: the target distortion of
Talwar’s algorithm, the level in the split-tree decomposition at which a child town is attached, and
the amount of adjustment permitted in defining X7. The latter two parameters we set to &, but the
distortion in Theorem 2.3 needs to be smaller. We use &’ for the target distortion of this embedding

and set & = &2.

5 The expected distortion of the embedding

We now show that the expected distortion of the constructed embedding H is 1 4+ O(g). For this,
we focus on a pair of vertices u,v € V and argue that

E[disty (u,v)] < (1 + O(¢e))distg(u, v).

12



The high-level idea is rather intuitive: suppose that distg(u,v) € (r;,r41] for some ¢ and let T € T
be a town (a) that contains both u and v, and (b) whose child towns separate v and v; i.e., u and v
are in different child towns of T'. We first argue that there is a level-i core hub h of T that lies on
the unique shortest u—v path.

Lemma 5.1. Let u and v be vertices that lie in different child towns of T, and i be such that
distg(u,v) € (ri,riy1]. There is a core hub h € C; NsPC(r;) of T on level i that hits the shortest
path between u and v.

Proof. By definition, sSPC(r;) must contain some hub h on the shortest u—v path. Recall that the
town T can be partitioned into its core C; on level ¢ and the child towns on levels at least . If hub
h is not a core hub, h ¢ spc(r;) N C;, then it is either outside of T or in a child town of T on a level
at least 1.

If h lies in a child town 7" of T, we can assume w.l.o.g. that v ¢ T” since v and w lie in different
child towns. As a hub on level 7, h cannot be in a town on level ¢ by Definition 3.1, so T” is a
town on level i + 1 or above. By Lemma 3.2 we then know that distg (v, h) > 741, but at the same
time, distg (v, h) < distg(v,u) < r;+1—a contradiction. If h lies outside of T', then by Lemma 3.2
distg(v,u) > distg(v, h) > dist(T,V \ T') > r;, where j is the level of T. However by the same
lemma, distg(v,u) < diam(7") < rj—again a contradiction. O

By Theorem 4.2 it now follows that there is an approximate core hub hx € X7 such that
distg(h, hx) < er; = O(e)distg(u, v), (1)

since rj4+1/m; = O(1) using our assumption that ¢ = O(1). We are also able to show that the
expected distances between u and hx and v and hx, respectively, are well preserved by H.

Lemma 5.2. Let v be a vertex in a child town T" of T € T, and let hx be an approzimate
core hub in Xp. If the distance to the closest sibling town of T' is r, then E[disty(v,hx)] <
(14 O(e))distg(v, hx) + O(er).

Since u lies in a different child town than v and distg(u,v) € (ri,rit1], we get O(er) =
O(e-distg(u,v)) in Lemma 5.2. Hence, using triangle inequality, the bound on the expected distance
in this lemma immediately implies the following;:

E[disty (v, u)] <E[disty (v, hx)] + E[distg (hx, u)]

(14 O(e))distg(v, hx) 4+ (1 + O(e))distg(hx,u) + O(e - distg(u, v))

(14 O(e))(distg (v, h) + distg(h, hx) + distg(hx, h) + distg(h, u)) + O(e)distg(u, v)
(14 O(e))distg (v, u),

IN N CIN

where the last equality uses the fact that hx lies close to a shortest u, v-path (see (1)). Together
with the fact that distg(u,v) < disty(u,v), this implies our stretch bound.

Theorem 5.3. The expected stretch of the embedding H of G is 1+ O(e).

The remainder of this section is devoted to providing a proof of Lemma 5.2, for which we will
need some further details from Talwar’s embedding of low doubling metrics into bounded treewidth
graphs.

13



5.1 The distortion of an embedding for approximate core hubs

Before proceeding with the proof of Lemma 5.2 we will first need to have a closer look at the
properties of Talwar’s split-tree decomposition. We will use these properties to prove that our
computed embedding Hyx of the approximate core hubs X7 has distortion 1 + O(e).

Lemma 5.4 ([38]). The split-tree decomposition for a metric (X,dist) with doubling dimension d
and aspect ratio « satisfies the following properties:

(1) there are logy @ + 2 levels,

(2) the clusters on each level i partition X,

(3) the diameter of a cluster at level i is at most 21, and

(4) the probability that any points x,y € X are in distinct level i clusters is O(d - dist(z, y)/2g)

Recall the notion of d-net from Definition 2.4. The main result of Talwar [38] that we use for
our embedding is the following more detailed account of Theorem 2.3.

Theorem 5.5 ([38]). Let (X,dist) be a metric with doubling dimension d and aspect ratio . In
polynomial time we can compute a probabilistic embedding D of X into bounded treewidth graphs.
In particular, a computed graph H € D has a tree decomposition D with the following properties:

(i) each bag b in D corresponds to a cluster C in the split-tree decomposition of (X,dist), and the
tree underlying D is precisely that of the split-tree decomposition;

(ii) the nets of the clusters form a hierarchy, i.e., every vertex in a bag b is also contained in one
of the children of b in the tree D;

(iii) a bag b corresponding to a cluster C at level i consists of a B2 -net of C for some 8 > 0; and

(iv) using a ﬂQz-net for clusters at level i, the expected distortion of H is 1+ O(fdlogc), and the
treewidth of D is at most (1/5)°@.

In particular there is a f = O(¢'/(dlog ) such that the expected distortion is 1 + €', and the
treewidth, is (dlog(a)/e')O®).

For every bag b in D, the graph H contains a complete graph on the nodes in b. The $2'-net
in each bag serves as a set of portals, through which connections leaving the cluster are routed,
analogous to those in [8]. The bound on the stretch follows from Lemma 5.4 (see [38] for the details).
The bound on the treewidth follows from the fact that a B2i-net in a cluster with diameter at
most 27! has aspect ratio O(1/3) and the following property of low doubling dimension metrics.

Lemma 5.6 ([30]). Let (X,dist) be a metric with doubling dimension d andY C X be a set with
aspect ratio o.. Then |Y| < 270221,

To analyze the distortion of the embedding Hx, we rely on the following useful fact that relates
properties of hubs in X7 and their representatives in Y. Recall that a cluster C'x of Xp is formed
from a cluster Cy of Yr by expanding each hub h € Cy into all vertices in X7 that h represents,
and a bag bx of the tree decomposition Dx of Xr is formed by the same procedure from a bag by
of the tree decomposition Dy of Y. For such pairs of clusters and bags we obtain the following.

Lemma 5.7. If by is a §-net of Cy for some §, then bx is a 2d-cover of Cx, i.e., for each hx € Cx
there is a hy € bx such that distg(hx, hy) < 24.

14



Proof. Let hx € Cx. If hx € bx, we are done. If not, let hy be hx’s representative in Y7, and
let T" be the child town of T for which hx,hy € X7 NT’. We obtained by by expanding each
h € by into all vertices it represents, so hx ¢ by implies hy ¢ by. Let hy € by be the closest
vertex in by to hy. The set by is a d-net of Cy, so distq(hy, hy) < 8, but by, ¢ T', since hy, # hy,
and each town contains at most one representative. By Lemma 3.2, diam(7") < distg(7",V \ T"),
so distg(hx,hy) < dist(hy,h} ), which means that distg(hx,h} ) < 20. Finally, b} € bx, since
by Cbx. ]

Another useful tool is given by the following lemma, which compares the separation probabilities
of approximate core hubs and their representatives.

Lemma 5.8. Let u,v € X1 be two hubs with respective representatives u’,v'" € Yp. If u' # ', then
the probability with which u and v are in distinct level i clusters is O(d - distg(u,v)/2%), where d is
the doubling dimension of Yr.

Proof. If the representatives v’ and v’ of u and v differ, then v and v must lie in different
child towns 77 and 7" of T. By Lemma 3.2, diamg(7") < distq(7",V \ T") < distq(T",T"),
so that distg(u,u’) < distg(u,v), and similarly for distg(v,v"). Hence distg(v/,v") < distg (v, u) +
distg(u, v) + distg(v,v") < 3 - distg(u,v). By Lemma 5.4 (4), the separation probability of u/ and
v’ on level i is at most O(d - distg(v/,v')/2"). Since u and v lie in different clusters if and only if
their representatives do, the probability of u and v being separated is O(d - distg(u,v)/2°). O

The next lemma bounds the distortion of Hx. Its proof closely mirrors Talwar’s proof of
Theorem 5.5 (c.f. [38]).

Lemma 5.9. If the embedding Hy of (Yr,distg) is computed according to Theorem 5.5, then the
constructed embedding Hx of (Xr,distg) has expected distortion 1+ O(e’).

Proof. Consider a cluster Cy on level 7 in the split-tree decomposition of Y7 given by Lemma 5.4.
For any h € Cy the i-parent of h is the closest vertex to h in the bag by corresponding to Cy. Since
by Theorem 5.5 the bag by consists of a (2%-net of Cy, the distance between h and its i-parent is
at most $2°. Let Cx be the cluster in X7 formed by expanding each h € Cy into all vertices in X
that h represents, and let bx be the corresponding bag formed by the same procedure from by. We
define the i-parent of a vertex w € Cx in the same way as for Cy, i.e. it is the closest vertex to w
in bx. According to Lemma 5.7, the distance from w to its i-parent is at most 232°.

For an arbitrary pair u,v € X7 we bound the distortion of their distance in Hx by considering
the path along the i-parents of u and v for increasing values of i. More concretely, since the bags of
the tree decomposition Dy of Hy form a hierarchy by Theorem 5.5, the same is true for the bags
of the tree decomposition Dx of Hx. Thus on the lowest level [ of the split-tree decomposition,
the [-parent of a vertex w is w itself. We inductively define v; = v, u; = u, and v; and u; to
be the i-parent of v;_; and wu;_;, respectively, for any level i > [. Since the bags of Dx form a
hierarchy, for each level i > [ the edges {u;_1,u;} and {v;_y,v;} exist in Hy. Thus the distance
from u;_; to u; and from v;_; to v; is at most 232" in Hy. Now, let j be the lowest level at which
u and v lie in the same cluster of X7. In particular, the j-parents u; and v; lie in the same bag
of Dx, and so there is an edge {uj,v;} in Hx. We next bound the expected length of the path
P = (u=upupq,...,u3505,0_1,...,0p = v) in Hx in terms of distg(u,v).

For this we need to bound the probability with which any pair of i-parents w; and v; lie in
different clusters of X7 on level i. Note that u and v always lie in the same cluster as their respective
i-parent, and so u; and v; lie in different clusters of X7 on level 7 if and only if u and v lie in
different clusters of X7 on the same level. Lemma 5.4 gives a bound for the probability with
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which representatives lie in different clusters of Y in terms of the distance between them. Let
u’,v" € Y7 be the respective representatives of v and v. If ' = v’ then obviously distg(u/,v") = 0.
Otherwise, v’ and v’ lie in different child towns of 7. By Lemma 5.8, this means that u and v
lie in different clusters on level i with probability O(d - distg(u,v)/2%). Let A; be the indicator
variable that is 1 if u; and v; lie in different clusters of X on level 4, and 0 otherwise, so that
Pr[A; = 1] = O(d - distg (u, v)/2%).

Consider the subpaths of P from u to u; and v to vj. The length of each such path is at most

57526271 Az, Accordingly, the edge {uj,v;} has length at most distg(u,v) +237; 23211 A= Since
there are at most log, a levels in the split-tree decomposition, we can bound the expected length of

P by

log, o ) )
diste (u,v) +4 Y 282 O(d - diste(u, v)/2') =
i=l

(1+ O(Bdlog a))distg(u,v) = (1 + O(e"))diste (u, v),

where we use that 8 = O(¢'/(dlog «)) by Theorem 5.5. O

5.2 The distortion of the embedding of the graph

We now turn to proving Lemma 5.2. For this, throughout this section, we focus on a town 71" of
the towns decomposition 7. We further let 7" be some child town of T, and we let the distance
r between T” and the closest sibling town be in the interval (r;,r;11]. Further, we define b to be
the connecting bag of 7" (c.f. Algorithm 1), and let C' be the corresponding cluster in the split-tree
decomposition of the approximate core hubs Xrp.

Given vertex v € T C T, and some core hub hx € Xr, the goal is to bound their expected
distance in the constructed embedding H in terms of their distance in the input graph G. If H
contains an edge between v and hx then we are of course immediately done, but this may not be
the case. For example, in the construction of the embedding, we add direct links between vertices of
T" and members (i.e., net points) of the connecting bag b, but hy may not be a member of b. We
first consider this issue and show that, even if hx € C'\ b, then b at least contains a net point close
to hx.

Lemma 5.10. For any approzimate core hub h € X0 N C, the bag b contains a net point w such
that distg (h,w) = O(ery).

Proof. Let | be the level of b in the tree decomposition Dy, which by Algorithm 1 is at most
i+ logy(d/e), where i = [logyr;]. If h € b there is nothing to show. By (ii) of Theorem 5.5, the
bags of Dy form a hierarchy, which by construction of Dx means that the bags of Dx do too.
Thus h ¢ b is a vertex in a bag on some level below /, and so we can reach some vertex of b from
h in Hx by starting at the bag containing A and following the edges to higher level bags until we
reach b. More concretely, the bags computed for the tree decomposition Dy of the representative
hubs Y7 contain $27-nets of the corresponding clusters by Theorem 5.5. Hence by Lemma 5.7,
the bags of Dy contain 2/32/-covers of the clusters of X7. Thus there is a path in Hx from h to
some vertex w of the bag b that traverses the net points of the bags up the levels until reaching
l, by always moving to the closest net-point at the next level. The length of this path is at most
22:1 2627 = O(B2") = O(Bdr; /<), since 2! = O(dr;/<). Because 3 = O(&’/(dlog o)) by Theorem 5.5
and &’ = €2, this bound simplifies to O(er;), which also bounds dist (h, w). O

16



The above lemma provides a vertex w of the con- o

necting bag b of T" through which we can connect to o >>fh<w> S~ uf=ri L ™\
. . . Eri <r; !

a hub hx, if hx € C. In case hx lies outside of C w ‘CT/I"s’rHT\\,/

however, as we will see the following lemma provides T = "

such a vertex in b to connect to hx. <

Lemma 5.11. For any v € T' and approximate core xhx

! . / .
hub hx € X\ T, th? connecting bag b of T" contains a Figure 4: The net point w lies in the connect-
vertex w such that diste (v, w) = O(distg(v, hx)) and ing bag b of 7", and h lies in the corresponding

distg (v, w) = O(ry). cluster C'. Note that v may be closer to hx

o . than to h.
Proof. Recall that, by our choice in Algorithm 1, cluster

C corresponding to connecting bag b of T” contains the closest hub A € X7 to T”. By Lemma 5.10,
there exists w € b with distg(h, w) < distg(h, w) = O(er;) (cf. Figure 4). As by triangle inequality
distg(v,w) < distg(v, h) + distg(h,w), it remains to show that distg(v,h) = O(r;) in order to
prove distg (v, w) = O(r;), if € tends to zero. By Lemma 5.1 there is a core hub u of T on level 1,
which lies on the shortest path between T and T”, the closest sibling town to 7”, and thus u is
at most as far from 7" as any vertex in 7”. Hence distg (7", u) < r;41, since we assumed that the
distance r between T" and T” lies in the interval (r;,7;41]. By Theorem 4.2 there is an approximate
core hub ' € Xp for which distg(u,u’) < er;. Hence the closest approximate core hub h is at
distance at most 7,11 + er; from T7”. From Lemma 3.2 it follows that every town on level at least
7 + 1 has distance more than r;,; to any other town. Since the distance r from T" to T” is at
most r;41, the level of 7" is at most i. Hence the same lemma also implies that the diameter of
T' is at most r;, and thus distg(v, h) < diam(7") + distg(T",h) < rip1 + (1 + &)r; = O(ry), since
Ti+1/7i = c is constant and we assume that ¢ tends to zero. This implies distg (v, w) = O(r;) as
claimed. Note that since hx lies outside of T, distg (v, hx) > distg(T”,V \ T") > r; by Lemma 3.2,
which immediately implies the remaining bound distg (v, w) = O(distg (v, hx)). O

So far we have identified vertices w in the connecting bag b through which we are able to connect
to a hub hx from a vertex v € T" for the two cases when hy € C and hx ¢ C. The next lemma
provides a bound on the probability with which we need to consider each of these cases. Additionally
it also bounds the distance from v to hx in the former case.

Lemma 5.12. Let hx be an approximate core hub in Xp, and v € T', then Prlhx ¢ C| =
O(e - distg(v, hx)/r;). In addition, disty (v, hx) < distg(v,hx) + O(er;) if hx € C.

Proof. If hx € T' then hx € C, since by Algorithm 1 the cluster C' contains the closest approximate
core hub to 7" and all hubs of X that are represented by the same hub of Y7 N C' (i.e. that are of
the same child town) are contained in C. Hence if hx ¢ C then hx ¢ T’. Consider the vertex w € b
for which distg (v, w) = O(distg(v, hx)), which now exists due to Lemma 5.11. The hub hx is in C
if and only if w and hx are in the same cluster on the level [ of C. If the level [ of the cluster C
is the level j of the root of Dy, then C contains all vertices of T including hx and w, and so if
hx ¢ C then | # j. If w and hx have the same representative, they will be in the same cluster by
Algorithm 1, so that if hx ¢ C then w and hx have different representatives in Y7.

By these observations, the probability with which w and hx lie in different clusters is O(d -
distg(w, hx)/2') using Lemma 5.8, which in turn can be bounded by O(e - distg(w, hx)/ri), as
2! = ©(dr;/¢) by Algorithm 1 whenever I # j. Upper bounding distg(w, hx) in terms of distg (w, v)+
distg(v, hx) = O(distg(v, hx)) we obtain Pr[hx ¢ C] = O(e - distg(v, hx)/73).

To bound the distance if hx € C, by Lemma 5.10 we know that there is a vertex hy € b
such that distg(hy, hx) = O(er;), and v has an edge in H to hy. Therefore disty(v,hx) <
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distg (v, hy) + dist g (hy, hx ) = distg(v, hy) + O(er;). Since distg(hp, hx) < distg(hy, hx ), we can
upper bound distg (v, hy) by distg(v, hx) + distg (hx, hy), which proves the claim. O

Lemma 5.12 provides a bound on the distance between vertices of 7" and approximate core hubs
in C. We also need to bound the distance between vertices of 7" and core hubs of T' that are not
in C. The following lemma will be useful in this endeavour.

Lemma 5.13. Let Hy be the probabilistic embedding of (X1, distg) with expected distortion 1+0O(e")
giwen by Lemma 5.9. Let x,y € X7, and let C be a cluster in the randomized split-tree decomposition
containing x. Then Eldisty, (z,y) |y ¢ C] < (1+ O(¢")/ Prly ¢ C))dista(z,y).

Proof. By Lemma 5.9, the expected distance between x and y in H is at most (1 + O(¢’)) times
their distance in metric (X, dists), and hence

E[disty (z,y)] = Prly ¢ C]E[distpy (z,y) [y ¢ C] + Prly € C]E[distpy (z,y) [y € C]
< (14 0O())distg(z, ).

Embedding Hx dominates (Xr,diste), and hence E[disty, (z,y) | y € C] > distg(z,y). The
inequality above therefore implies that

Prly ¢ C]E[disti (2,9) | y & O] + (1 — Pr[y & O))diste(z,y) < (1 + O(¢"))distg(, y).

Rearranging, Prly ¢ C|(E[disty, (z,y) | y ¢ C] — distg(z,y)) < O(¢')distg(z, y), and

Eldistyr, (z.9) | y ¢ O] < (1 ! '>C]) dist (. )

v
Prly ¢
O

We are now ready to bound the distance between a vertex v € T' and any core hub in X7, given
the tools of the above lemmas.

Proof of Lemma 5.2. Let C be the cluster corresponding to the connecting bag b of T'. We
bound E[distg (v, hx)] in terms of the conditional expected values E[disty(v,hx) | hx € C| and
E[distg (v, hx) | hx ¢ C]. If hx € C we get a (deterministic) bound on the distance between v and
hx from Lemma 5.12. Hence E[disty (v, hx) | hx € C] < distg(v, hx) + O(er;).

If hx € T' then hx € C, since C contains the closest hub to 77 and all hubs of X in the
same child town of T" end up in the same cluster after expanding all hubs of Y7 into the hubs of
Xr that they represent. Hence if hy ¢ C then hx ¢ T', and by Lemma 5.11 there is a vertex
w € b for which distg (v, w) = O(distg (v, hx)). Both w and hx are approximate core hubs, and so
E[disty(w, hx) | hx ¢ C] < E[disty, (w,hx) | hx ¢ C], as H contains Hy. Applying Lemma 5.13
on this conditional expected distance, we obtain

Pr[hX §7§ C] E[distH(v, hx) | hx ¢ C] < Pr[hx Qé C’](dist(;(v,w) + E[diStH(w, hx) | hx ¢ C])
< Prlhx ¢ C] (dist(;(v,w) + (1 + Pr[iﬁ%) dist(w, hX)>
= Prlhx ¢ O)(distg (v, w) + distg(w, hx)) + O(e)distg(w, hx)
< Prlhx ¢ C](2 - distg(v, w) + distg(v, hx))
+ O(&') (distg(w, v) + distg (v, hx))
= Pr[hx ¢ C](2 - distg(v,w) + distg(v, hx)) + O(’ - distg (v, hx)).
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From Lemma 5.11 we also know that distg(v,w) = O(r;). Additionally using that ¢’ = 2, and
the bound on Pr[hx ¢ C] in Lemma 5.12, the expression above is

Edistg(v, hx)

i

Pr[hx ¢ Cldistg(v,hx) + O < > O(r;) + O(E/ distg(v, hx)) =

Pr[hX §é C]distg(v, h)() + O(S)diStg(U, h)() .
Combining the above bounds we obtain

E[disty (v, hx)] =Prlhx € C|E[disty(v,hx) | hx € C] + Pr[hx ¢ C|E[distg(v,hx) | hx ¢ C]
<Pr[hx € C|(distg(v, hx) + O(er;)) + Prlhx ¢ Cldistg(v, hx)
+ O(e)distg(v, hx)
(1 + 0(e))dista(v, hx) + O(ers)

where r; = ©(r), which proves the claim. O

6 The doubling dimension of approximate core hubs

The aim of this section is to give a proof of Theorem 4.2 by showing that for any town 7" € T there
is a set X7 C T of approximate core hubs with bounded doubling dimension. We first define the
set X7 and then compare its properties with those of the core hubs. In particular, even though we
obtain the approximate core hubs by shifting the core hubs to positions nearby, the resulting set is
still locally sparse on each level. In addition, they are also locally nested. Roughly speaking, this
means that within a small ball of radius er; for some level ¢, all approximate core hubs above level 4
are ‘nested”, i.e., contained in one another. This property will help us in bounding the doubling
dimension of X7 independently of the aspect ratio.

The set X7 of a town T of level j is the union of sets X, one for each level i € {1,...,5 — 1},
which are defined inductively as follows in Algorithm 2. We call a vertex in X% an approximate core
hub of T' on level i. Recall that C; is the core of T at level ¢ (Definition 4.1), and Cy = @ since the
sprawl is empty on level 0.

Algorithm 2: Defining X
1 X1+ C1nspe(r)
2 fori=2,...,5—1do
X0
foreach h € C; Nspc(r;) do
if 30’ € XL for some | < i such that dist(h,h') < er; then add b’ to X1
L else add h to Xr}

=2 B BV

7 return Ui;ll X4
Note that this definition of X fulfills the two properties of Theorem 4.2 that there must be an
approximate core hub A’ € X within distance er; of each core hub h of level ¢ and that X7 can be
computed in polynomial time. Note also that X% C J;_; C; N sPc(r;), and hence the vertices in
X7 are core hubs, but not necessarily core hubs of level i. The main benefit of shifting core hubs

to approximate core hubs is that for any town 7" € T on level j, the set system {X%}gzl is locally
nested as we explain in the following lemma.
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Lemma 6.1. Let B be a set of diameter at most er; for some level I, and let i be the lowest level
for which erp N B # 0. The approzimate core hubs on level ¢ > max{i,l} in B must also be core

hubs on some level at most max{l,i}; i.e., BN X% C Uzzi{{l’i} Xh.

Proof. The statement is trivially true for ¢ = max{l,i}. Consider any higher level ¢ > max{l,i}.
Since the diameter of B is at most er; < ery and X4 N B # (), for every h € BN C, N sPC(r,) there
is a vertex h' € erp at distance at most er, from h. Hence by the definition of the approximate core
hubs in Algorithm 2, X7 N B C Ug; XTI, and the claim follows by induction. O

The cost of using approximate core hubs is that it is not immediately clear why the vertices
in X% should still be locally sparse. This requires a tricky argument that we turn to now. The
crucial observation leading to this result is that we can bound the number of hubs of a shortest
path cover sPC(r;) not only in a ball B,,, »(v) using the local sparsity but also close to the ball.
The approximate core hubs in X7, are obtained by shifting the core hubs of level ¢ to lower level
core hubs at distance at most er;. Hence the number of vertices of X} N B, /2(v) can be bounded
by the total number of level i core hubs that are within distance er; of B, /2(v). The definition of
highway dimension (Definition 1.1) allows us to get a handle on the hubs in larger balls of radius cr;,
and this, combined with the minimality of our shortest path cover, allows us to bound the number
of nearby core hubs. Specifically, in a graph of highway dimension k, and given a locally s-sparse
shortest path cover, we are able to show that the approximate core hubs erp of level i are locally
3ks-sparse as long as the stretch parameter ¢ is chosen to be at most 2. The lemma is stated in a
slightly more general form than we need it here, since we will reuse it later.

Lemma 6.2. For a metric (V,distg) induced by an underlying graph G of highway dimension k,
let By /2(v) be a ball of radius cr/2 centered at v € V, and let SPC(r) be a minimal locally s-sparse
shortest path cover. There are at most 3sk hubs h € sPC(r) for which distg(h, Be,j2(v)) < cr/2.

We note that this lemma does not bound the number of hubs in spPc(r) that lie in a ball B, (v),
and in fact the number of hubs in B, (v) N SPC(r) can be unbounded: in a star with edges of length
cr a minimal shortest path cover SPC(r) may contain all vertices except the center vertex v of the
star. This shortest path cover is also locally 1-sparse, since any ball of radius cr/2 contains only
one vertex of the star. However the ball of radius c¢r centered at v contains the whole star, and thus
all hubs from spc(r), i.e. a potentially unbounded number.

Since the hubs considered in Lemma 6.2 may lie outside of B, /»(v), we need to use Definition 1.1,
which bounds the number of hubs in larger balls of radius c¢r. However, the hubs given by Definition 1.1
do not necessarily coincide with those of spc(r). Therefore, we need an additional tool, as given by
the following technical lemma, which relates the hubs given by Definition 1.1 with those in spc(r).

In the following lemma, we consider once more a metric induced by graph G = (V, E) of highway
dimension k. As usual, we let spc(r) denote a locally s-sparse shortest-path cover for radius r.
Consider radii 7,7 such that 7 < ¢r/2, and let B.:(v) be a ball of radius ¢r centered at v. For each
vertex h € B.i(v) NsPC(r), we let Py be a shortest path that (a) lies in B.z(v), i.e. V(Py) C Bei(v),
(b) has length in (7, cr/2], and (c) contains h. If no such path exists, we let P, = L.

Lemma 6.3. Let W be the set of all vertices h € Bei(v)NSPC(r) for which Py # L. Then |W| < sk.

Proof. The proof follows directly from Definition 1.1. The definition implies that there is a set
K C Bg:(v) of at most k vertices covering all shortest paths in B.z(v) of length more than 7. In
particular these vertices cover each path P, for h € W. We have h € V(P,) and the length of P, is
at most ¢r/2, so distg(h, K) < ¢r/2. Therefore W can be covered by at most k balls of radius cr /2
centered at each vertex in K. The set spc(r), and with that also W, is locally s-sparse, so each of
these balls contains at most s nodes, yielding |W| < sk. O
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Figure 5: The three balls in Lemma 6.2. The dashed ball is B,,/2(v), and the bold balls are the three
considered balls Bz, (v), moving from left to right. Hubs are crosses, and shaded areas represent possible
locations for hubs. Hubs in W, (left) cover paths entirely in B.,(v). For a hub h € Wy (center) the path P,
between h and wy, is long, while for h € W (right) the path Pj from h to uy is long.

We now prove Lemma 6.2. For this, define
W = {h € spc(r) | distg(h, Berj2(v)) < er/2}

as the set of hubs near v whose size we want to bound. In order to accomplish this, we carefully
choose three radii 7;, where i € {1,2,3}, and let W; be the corresponding set of hubs as defined in
Lemma 6.3 (see Figure 5). We will then show that

W C Wl U WQ U V~V3,
and conclude that W has at most 3sk elements directly from Lemma 6.3.

Proof of Lemma 6.2. We first apply Lemma 6.3 for 7, = r, and infer that the set W; of hubs
h € spc(r) that cover a shortest path contained in B, (v) and with length in (r, ¢r/2], is at most sk.

Observe that, by the inclusion-wise minimality of SPC(r), each h € SPC(r) must hit some shortest
path Qp, with length in (7, ¢r/2]. For h € W \ W, this path Q is not contained in B, (v). Let wy,
be a vertex on path @j of maximum distance from v, which by assumption must lie outside the
ball B.r(v). We know distg(h, wp,) < cr/2, as the distance between h and wy, is bounded by the
maximum length of Q. Also let uj, be the closest vertex in By, /5(v) to h. By the definition of W,
distg(upn, h) < er/2. Since h does not cover any shortest path inside Be,(v) with length in (r, cr/2],
we must have distg(up, h) < r. Combining these, the distance from v to wy, is at most

distg (v, up) + distg(up, h) + distg(h,wp) <er/24+r+cr/2 =(c+ 1)r =c(1+ 1/c)r.

Hence, @y, lies in the ball Bz, (v) if we choose 75 = (1 + 1/¢)r. Furthermore, h € Wy if Q, has
length in the interval (7, cr/2].

Finally, let us consider a hub h € W'\ (Wl U Wg), for which the length of the path Q);, must lie
in the interval (r,79] = (r, (1 4+ 1/¢)r]. Let uj and wy, be defined as before. The distance between
h and wy, is now at most (1 + 1/¢)r, while the distance between u;, and wy, is more than cr/2, as
up € By jo(v) and wy, ¢ Ber(v). Tt follows that

distg(up, h) > cr/2— (14 1/c)r = (¢/2 —1—1/c)r. (2)
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We already saw that the left-hand side of the above inequality is at most r, so this case only arises
when ¢ < v/6 + 2. Note also that

distg(v, h) < distg(v, up) + distg(up, h) < cr/24+r = (c/2+ 1)r,

and hence B./241)-(v) contains a shortest path P}, from uy, to h. Equivalently, P, is contained in
Bei, (v) for 73 = (1/2 4+ 1/c)r. Observe that by (2), the length of P, is greater than

(¢/2—1—=1/c)r > 73 =(1/2+1/c)r,

as ¢ > 4. The length of Py, is of course also bounded by ¢r/2, the maximum length of @, and
hence h € Wg.

In conclusion, we showed that W C W1 U Wy UWs, and hence W contains at most 3sk elements
by Lemma 6.3. O

We have now determined all the properties of approximate core hubs that we need in order to
prove that any set X7 has low doubling dimension. Recall that for this we need to show that we can
cover any ball B of radius 2r in the metric defined by X7 by a bounded number of balls of half the
radius . We first prove a slightly weaker result in which we show that core hubs in a ball of radius
cr/2 can be covered by a small number of balls of radius 2r, for some given r (note that, for ¢ > 4,
2r is smaller than cr/2). We will later apply the next lemma recursively in order to obtain a bound
on the doubling dimension of Xr.

Lemma 6.4. For any level i and any ball By, /2(v) C V' of radius cr;/2 we can cover B, jo(v) N Xt
with at most O (kslog(1/¢)/A) balls in V' of radius 2r; each, for any 0 < e < 2 and violation A > 0.

Proof. Recall that X7 = Ug:_ll XZT, where j is the level of the town T and XlT are the approximate
core hubs at level [ of T'. We distinguish three cases based on the level [. First consider the vertices
in (Jj_; XL up to level i, and recall that X C (Ji_,(Cy N sPc(r)), i.e., the approximate core hubs
of level i are core hubs of levels up to 7. By Definition 4.1 the cores of town T' form a chain—
Cyq—1 € Cy—and thus every vertex of | J;_, Xéﬂ is contained in the core C; of T on level 7. The core
C; is part of the sprawl of level ¢, which by Definition 3.1 is covered by balls of radius 2r; centered
at hubs in SPC(r;). For such a ball to cover some parts of the core C; in B, /2(v), its center v must
be at distance at most 2r; from B, /5(v). Hence by Lemma 6.2 there are at most 3ks balls of radius
2r; covering all of Ule Xk in By, j2(v).

Second, consider the approximate core hubs on levels g € {i+1,...,l} where | =i+ [log./4(c/€)].

Cover every vertex of Ulq:i 41 X7 in B, /2(v) by one ball of radius 2r; each. For any such level ¢ > i

the radius of B, /2(v) is at most cry/2. Since we assumed that ¢ < 2 while ¢ > 4, the approximate
core hubs on level ¢ are shifted by at most ery < 2r, < cry/2 to lower level core hubs by Algorithm 2.
Hence we can bound the number of such hubs in B,,, 2(v) per level by 3ks using Lemma 6.2, which
also bounds the number of balls we use to cover them. If the violation A tends to zero, the number
of such levels is O(log,/4(c/c)) = O(log(1/¢)/A), since log(c/4) = log(1 + A/4) = ©()). In total this
makes O (kslog(1/e)/A) balls for levels up to .

For the remaining levels I > i + [log./4(c/¢)] we use the fact that the approximate core hubs are
locally nested by Lemma 6.1. In particular, note that er; > cr; since r; = (¢/4)!, i.e., the diameter
of B, /2(v) is at most ery for level I. Let g be the lowest level for which X7. N By, jo(v) # 0. If ¢ <1
the hubs in X7 N B, /2(v) are already accounted for. Otherwise, as before we greedily cover each
hub in X7 N By, /2(v) by a ball of radius 2r; each, and by Lemma 6.2 we need at most 3ks balls to
do so. Now, by Lemma 6.1, every vertex of X% N B,,, /2(v) for a level p > max{l, ¢} is contained in

some set Xg: N By, 2(v) for p’ < max{l, ¢}. Since we already covered each hub in Xg N Bey, j2(v)
with a ball, the claim follows.
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We can now use the above lemma recursively to cover the set X in a ball By, (v) with balls of
half the radius, as we show next.

Lemma 6.5. Let T € T be a town and let Bor(v) €V be a ball of radius 2r. Then Ba.(v) N Xp
can be covered by at most (ks log(l/s)//\)o(l/’\) balls in V of radius r, for any 0 < ¢ < 2 and

violation A > 0.

Proof. Let [ be the smallest level for which ¢r;/2 > 2r. Instead of using Ba,(v) directly, we will
cover the larger set B, j»(v) N X7 with balls of radius cr;_1/4 < r, which we find by recursively
covering B, /o(v) with balls of the next lower level.

Since r; = (c/4)", a ball By, (h) has radius 27,1 = 2cr;/4 = cr;/2. Hence, by Lemma 6.4, we
can cover Xt N Bo,, , (h) with O (kslog(1/)/)) balls of radius 2r;, on which we recurse. By the
choice of I, > ¢r;—1 /4, and since r; = (¢/4)", the number of levels # on which we need to recurse is

at most
1

logy(c/4)

The total number of balls needed to cover Bs,.(v) with balls of radius r is then at most

log./s(cri/2) —logeu(eri-1/4) =1+ =O(1/N).

B—1

> "0 (kslog(1/e)/A)' = (kslog(1/e)/N) ™ |
1=0

which concludes the proof. O

The balls B,(h) found in Lemma 6.5 are centered at hubs. If all these hubs are part of Xr,
then we have shown that X7 has bounded doubling dimension. However, if h ¢ X7 for some ball
center, then we have partly covered Ba,(v) N X7 with invalid balls that are not centered at points
in the metric X7. We already addressed this issue in Section 4 by proving Lemma 4.3. Thus we
are finally ready to prove the remaining part of Theorem 4.2 by bounding the doubling dimension
of Xp. Consider a ball By,(v) C V. According to Lemma 6.5 we can cover Ba,(v) N X7 using
at most (kslog(1/)/X\)?(/Y balls in V of radius r. Recall that the doubling dimension is log, 6,
where § is the number of balls needed. Hence by Lemma 4.3 the doubling dimension of X is
O(log(%(l/e))/)\), as claimed.

7 The treewidth of the embedding

We prove by induction that the embedding has bounded treewidth. That is, we prove that the
embedding of any town T € T has bounded treewidth, assuming that the embeddings of its child
towns have bounded treewidth. In particular, we prove the following, which implies the treewidth
bound of Theorem 1.3, since there are O(log. /4 @) = O(log(ar)/A) levels in total, and we can assume
that s = O(klogk) by [2].

Theorem 7.1. The embedding constructed for a town T € T of level j has treewidth
J - (log(0) LB ).

To prove Theorem 7.1, we show how to compute a tree decomposition Dp of the embedding Hr,
when T has child towns in the towns decomposition. Recall that Hr is obtained by connecting the
embeddings Hy of each child town T” to the embedding Hy of the approximate core hubs X7. In
particular, an edge is added between every vertex in 77 and every hub in the connecting bag b of T”
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in the tree decomposition Dx of Hx. To compute Dy we will join the tree decompositions of the
child towns with Dx. For this we need to inductively specify a root bag for each tree decomposition,
and the root bag of D7 is the highest level bag of Dx.

Now for each child town 7", consider appending the subtree D7+ to Dx by adding the root bag
of D7+ as a child of the connecting bag b of T" in Dx. This satisfies condition (a) of Definition 2.1,
as the union of all bags is T. Unfortunately, though, this initial tree of bags D7 does not satisfy
the remaining requirements of a valid tree decomposition of Hp according to Definition 2.1: the
edges added to connect the child towns and their connecting bags may not be contained in any
bag—violating (b)—and there might be some vertex v for which the bags containing v are not
connected in Dp—violating (c).

To make Dr valid we change the initial tree of bags in two steps, of which the first will guarantee
that (b) is satisfied, and the second guarantee that (c) is satisfied. Namely, we perform the following
for every child town 7" and its connecting bag b in Dy:

1. add all vertices of b to each bag of Dy, and

2. add all hubs of X7 NT" to each bag of D7+, and also to b and all descendants of b in Dx (but
not the descendants of b in Dy that are bags of some Dpw for some child town T # T of T).

We now argue that the resulting tree decomposition is valid.
Lemma 7.2. After performing step (1) above, all edges are contained within some bag.

Proof. First, note that the decompositions Dx and Dps for each child town T are valid by
Theorem 5.5 and by induction, respectively. Hence the only edges that are not contained in any bag
of Dp are those added to connect a child town 7" and its connecting bag b. We add all vertices of b
to every bag of the decomposition Dy, so after repeating this for every child town, for every edge
in E(Hr) there is a bag in Dp containing both endpoints. O

We will bound the growth of the bags during this step later on using the bound on the size
of each bag b of Dx given by Theorem 5.5. Next we show that performing the second step will
guarantee that (c) of Definition 2.1 is satisfied.

Lemma 7.3. After performing step (2) above, for all vertices v, the set of bags containing v form
a connected subtree of D, and Dt is a valid tree decomposition of T'.

Proof. Suppose there is a vertex v such that the bags containing v are not connected after performing
the first step. By Theorem 5.5 and by induction, the sets of bags containing each vertex are connected
within Dy and D7 for all child towns 7", so v must be in X7 NT” for some T”. This means that v
is an approximate core hub of T' that happens to lie in the child town 7”. Since child towns of T
are disjoint by Lemma 3.3, v cannot be contained in two different ones, so that 7" is the only child
town containing v. Note that v cannot be in the connecting bag b of T” because then the first step
would have added v to all bags of D, which would have connected the sets of bags in Dx and Dy
containing v. Hence it can only be that v is in a bag of D7 and in some bag of Dx other than the
connecting bag of T”.

We know from (ii) in Theorem 5.5 that the vertices in the bags of the decomposition Dy for the
representative hubs Y7 of T form a hierarchy: every vertex in a bag b’ of Dy is also contained in
one of the child bags of b’. Recall that the decomposition Dx of X7 is obtained from Dy by simply
replacing each vertex with all hubs it represents. Hence the vertices in the bags of Dx also form a
hierarchy. Furthermore, all hubs in X7 NT" are in the same bags in Dy, since they are represented
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by the same vertex of Y. Since v € X7 NT" is not yet in the connecting bag b of T”, this means
that in Dy none of the hubs in X7 NT" are in a bag on a higher level than b.

Recall that we choose the connecting bag b so that its corresponding cluster contains the closest
approximate core hub h to T”. In this case, X7 NT" # () as it contains v, so h is a hub in X7NT". By
the construction of Dy, if b contains h then b contains the entire set X7 N7T". By (2) of Lemma 5.4,
on each level the clusters for Y7 partition Y. Clearly this is also true for X7. Hence any hub of
X7 NT’, including the problematic vertex v, can only be contained in bags of the decomposition D x
that are descendants of b.

Due to these observations we add all hubs of X7 NT" to each bag of Dy and also to b and all
descendants of b in Dy, and this will ensure there will not be any v for which the bags containing it
are disconnected in the resulting decomposition. Note that we do not need to add these hubs to
descendants of b in Dr that are bags of some Dp» for some other child town T" # T".

For the second part of the lemma, note that adding nodes to bags does not break conditions (a)
or (b) of Definition 2.1 established in Lemma 7.2, so the resulting tree decomposition is valid. [

At this point we have a valid tree decomposition Dy, but we still need to bound the sizes of the
resulting bags in Dx and each Dp,. We use the following two lemmas to bound the size of the bags
of Dx. In the first we show that for each bag b of Dx, the number of child towns connecting to b
and containing approximate core hubs is bounded. In the second lemma we prove a bound on the
maximum number of approximate core hubs in each child town.

Lemma 7.4. Let b be a bag of the decomposition Dx of the embedding Hx for Xp, and let d be
the doubling dimension of Xr. The number of child towns T of T for which X7 NT" # () and for
which b is their connecting bag, is O((d/e)?).

Proof. Let Y C Yr be the set containing exactly one representative for each of child town 7" that
has b as its connecting bag and for which X7NT” # (). We can bound the size of Y in order to bound
the desired number of child towns. To prove the bound we will use the fundamental property of
low doubling dimension metrics given by Lemma 5.6, which says that such metrics have a bounded
number of vertices in terms of their aspect ratio. We will use this lemma to bound the size of Y by
deriving a bound on its aspect ratio: since the child towns connect to the same bag b, we are able
to obtain an upper bound on the distance between the representatives in Y. We also get a lower
bound on the distances from the fact that b was chosen for a child town according to the minimum
distance to any other child town.

More concretely, consider the tree decomposition Dy for the representative hubs Yp. The bag b
was obtained from a bag b’ of Dy by replacing each vertex with the represented hubs of Xr. If the
level of bag b’ is [ then, by (3) of Lemma 5.4, the diameter of the cluster C’ corresponding to ¥’ is
at most 211,

Suppose T” is a child town that has b as its connecting bag and for which X7 NT" # (). The bag
b was chosen so that the corresponding cluster contains the closest hub h of Xp. Since X7 NT" # (),
this means h € X7 NT’. Analogous to the connecting bag b, its cluster C' is obtained from cluster C’
by replacing each vertex with its represented hubs. Hence all of X7 NT" resides in C. Accordingly,
the representative for the set X7 NT" of each considered child town 7" is in C’, i.e., Y C C".

Bags b and b’ are at the same level I. Recall that we chose this level in the following way:
if the closest sibling of a child town 7" is at a distance in the interval (r;,7;41], then the level
[ of b is min{j,i + [logy(d/e)]}, where j is the level of the root of Dy and i = [logy7;]. Let
i' = 1 — [logy(d/e)] so that i < i. Thus the distance from 7" to any of its siblings is more
than r; > 2071 > 27~ > g2l-1 /4.
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Since each vertex of Y is in a different child town, the distance between any pair of vertices in
Y is more than £2!~1/d, so the aspect ratio of the set Y is at most 2/+1d/(£2!=1) = O(d/e), due to
the bound on the diameter of cluster C’ containing Y. By Lemma 5.6 we then get |Y| < O((d/e)?),
and this bound is the same for the number of considered child towns. O]

Next we prove that the number of approximate core hubs in each child town is bounded. This
result will also help in bounding the treewidth of Hy, since it gives a bound on the number of
approximate core hubs that a vertex from Y7 represents.

Lemma 7.5. For any child town T" of T, the number of approximate core hubs in the intersection

XrNT is O(slog(1/e)/N).
Proof. Suppose that T” is a town on level 7, and recall from Section 6 that
A %
X7 C U Cq NsPC(rq), (3)
q=1

i.e. the approximate core hubs of level ¢ are core hubs on levels i or below. By Definition 4.1 no such
core hubs exist, and hence T” also does not contain any approximate core hubs of level at most 7.

Let | =i+ [log./4(1/¢)], and consider q € (i,!]. Once more, since 7" does not contain core hubs
of level at most i, any approximate core hub of level ¢ must also be a core hub of level I’ € (i, ¢],
and hence we focus on bounding the size of spc(ry) N T for each I € (4,1]. Recall that Lemma 3.2
implies that town 7" has diameter at most r; < cry /2, and therefore 7" is contained in B, /2(v)
for any v € T". Definition 1.2 implies that |B.,, 2(v) N SPC(ry)| < s, and hence also T" contains no
more than s level I’ core hubs. In summary, we have just shown that the set

X=7nJx}

q<l

has cardinality at most s[log,/4(1/¢)]. It remains to consider levels ¢ > [. Yet again by Lemma 3.2,
T’ has diameter at most 4
c\? c\!
r; = (1) <e <Z) < erg.

Lemma 6.1 directly implies that any approximate core hub in 7" of level greater than [ is contained
in X if the latter set is non-empty. So let us assume that X = (). In this case we argue as before, and
use Definition 1.2 to bound [sPc(ry) NT"| by s. All in all, we showed that 7" contains O(slog,4(1/¢))
approximate core hubs. O

Using the obtained bounds in the above lemmas, we are now ready to prove that the treewidth
of the embedding Hr is bounded.

Proof of Theorem 7.1. Towns that have no children are singletons, since every vertex is a town on
level 0. Hence for these the claim is trivially true. Otherwise, by Lemma 3.3, a town has at least
two children. For these we need to bound the resulting bag sizes of the tree decomposition D7, as
described in this section. First off we determine the treewidth of the embedding Hx for Xp. The
decomposition Dx was obtained from the decomposition Dy for Y7 by replacing each vertex with
the hubs of X it represents. For each vertex of Yp the number of represented hubs is bounded by
Lemma 7.5, while the treewidth of the embedding for Y7 is bounded by Theorem 5.5. Thus if the
doubling dimension of Y7 is d then the treewidth tx of Hx is

tx < (dlog(a)/e)?? - slog(1/e)/X.
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In the first step of the transformation to make the tree decomposition Dp valid, we add all
vertices of a bag b of Dx to all bags of the decomposition trees D7+ of child towns 7" for which b is
the connecting bag. By Lemma 3.3, if T" is a town on level j then each of its child towns is on some
level ¢ < j — 1. Hence if, by induction, the treewidth of some embedding Hp» was i - tx, then it is at
most j - tx after adding the vertices of b.

In the second step of the transformation of Dp, we add all hubs of X7 NT" to every bag of Drp.
By Lemma 7.5, | X7 NT"| < O(slog(1/e)/A) for any child town 7”. This term is dominated by
the asymptotic bound on ty. The second step also adds the hubs of X7 NT" to the connecting
bag b and all descendants of b in Dx. Note that this does not affect the bags of a decomposition
D7 of any child town T # T' of T. By Lemma 7.4, each bag b of Dx receives approximate core
hubs from O((d/¢)?%) child towns for which b is the connecting bag. Each such child town adds
O(slog(1/e)/A) hubs to b by Lemma 7.5. Hence the total number of hubs added to b from child
towns having b as their connecting bag is O((d/e)? - slog(1/¢)/A)). However these hubs are also
added to all descendants of such a bag b. The total number of levels of the decomposition tree Dx is
O(log @) by (1) of Lemma 5.4. Hence any bag of Dx receives at most O((d/c)?1log(c)-slog(1/¢)/\))
additional hubs from all its ancestors. This term is again dominated by the asymptotic bound on tx,
since &' = 2.

It follows that the treewidth of Dp is j - O(tx). Hence to conclude the proof we only need to
bound tx. The doubling dimension d of Y C X is O(log(%(l/g))/)\) by Theorem 4.2. Since
z - (logz)P0e) C (log £)°Uo8®)  (21og )®M) C 290 and O(logz) C O(x), the treewidth tx of
Hx is at most log(a)O(logz(g)//\). O

8 Obtaining approximation schemes

In this section we demonstrate how we can use the embedding of Theorem 1.3 to derive QPTASs
for various network design problems when the input graph G = (V| E) is an edge-weighted graph
with low highway dimension. Specifically, we consider the Travelling Salesman, Steiner Tree and
Facility Location problems. We begin by defining these (see also [39]), and we briefly mention how
these problems historically arose in contexts given by transportation networks.

For the Travelling Salesman problem the shortest tour, i.e. cycle in the shortest-path metric,
visiting all vertices of G' needs to be found. One of the earliest references! to the Travelling Salesman
problem appears in a manual of 1832, in which five tours through German cities are suggested to a
traveling salesman. The problem became known as the “48 States Problem of Hassler Whitney” in
1934 after Whitney studied it in the context of finding the shortest route along the capitals of the
lower 48 US states. Later milestones in its study include computing the shortest routes through
an increasin